Network Flow
Traffic Analysis

Implementing and analyzing flow data across

network topologies for threat detection

Mastering
Network Flow
Traffic Analysis

Implementing and analyzing flow data across
network topologies for threat detection

2

. Gilberto P'ersico
- >

Mastering Network
Flow Traffic
Analysis

Implementing and analyzing flow
data
across network topologies for threat
detection

Gilberto Persico

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025
Copyright © BPB Publications, India

eISBN: 978-93-65893-861

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the
publisher cannot be held responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

To View Complete
BPB Publications Catalogue
Scan the QR Code:

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

My partner Tin, my daughter Flora,
my father Carlo and my mother Grazyna

About the Author

Gilberto Persico is a Unix system, networking, and security engineer with
over 30 years of experience in the IT world, working as a programmer,
architect, security auditor, and systems and network engineer. He worked
for IBM, Sun Microsystems, Oracle, and Huawei both as an employee and
as a freelancer, designing, developing, and supporting production-ready
enterprise-grade architectures for dozens of very important customers. He
also conceived, designed, and developed FlOwer, a new generation network
flow analysis product, and deployed it in a big setup, successfully
controlling two big data centers. He plays cello in his free time and raises a
daughter when not hacking things in his lab. He also loves resurrecting old
systems, retro-computing, and is currently works as a NOC team leader in
Econocom.

About the Reviewer

Md Nahidul Kibria is currently staff engineer at HelloFresh. With over a
decade of experience in software development and cloud infrastructure, he
specializes in migrating legacy systems to cloud-native environments. He
focuses on improving the synergy between DevOps and SecOps processes
and enhancing infrastructure scalability, data streaming technologies, and
security.

He has worked with companies of various sizes, designing and developing
microservices-based platforms, implementing service mesh strategies, and
leading cloud migration initiatives. His expertise includes cloud
technologies such as AWS and Kubernetes, infrastructure as code, data
streaming technologies, and application security.

He is also an active member of the global cybersecurity community, serving
as a red team member and community lead, and has presented at prestigious
conferences. He believes that learning is a lifelong journey and enjoys
sharing his insights through writing and public speaking on topics such as
data streaming, application scaling, and advanced threat hunting.

He holds a bachelor’s degree in computer science and is passionate about
building resilient, scalable, and secure systems. Outside work, he enjoys
exploring emerging technologies and finding innovative ways to simplify
and enhance complex operations.

Acknowledgement

I want to express my deepest gratitude to my family and friends for their
unwavering support and encouragement throughout this book's writing,
especially my partner Tin and my daughter Flora. I want to thank my father
for teaching me the meaning of patience and determination, and my mother
for helping me in my darkest moments. I love you all.

I am also grateful to BPB Publications for their guidance and expertise in
bringing this book to fruition. It was a long journey of revising this book,
with valuable participation and collaboration of reviewers, technical
experts, and editors.

I would also like to acknowledge the valuable contributions of my
colleagues and co-worker during many years working in the tech industry,
who have taught me so much and provided valuable feedback on my work.

Finally, I would like to thank all the readers who have taken an interest in
my book and for their support in making it a reality. Your encouragement
has been invaluable.

Preface

Managing the enterprise network security is a complex task that requires a
comprehensive understanding of the latest technologies. On one side,
passive network traffic analysis still makes sense for several reasons, but
what is going to provide a more scalable approach to network security is the
analysis of network traffic flows.

The book aims to familiarize the readers with network traffic flows analysis
technologies, giving a deep understanding on the difference between active
and passive network traffic analysis, the advantages and disadvantages of
each methodology, with a special focus about network flow traffic analysis,
which due to its scalability, privacy, ease of implementation and
effectiveness, is beginning to play a leader role in the field of network
security. The book allows a reader to dive deep into tools and technologies
that can be used and leveraged to effectively deploy a scalable and
affordable network monitoring solution capable of giving a clear idea of all
internal traffic flows and providing an effective, almost-real-time data
breach detection mechanism.

Throughout the book, you will learn how common network infrastructures
are built, how the flow protocols work, what kind of data is managed, and
how you can effectively take advantage of it.

The book targets professionals with job roles such as incident responder,
forensic investigator, SOC analyst, network administrator, or a student
seeking to extend their knowledge on network flow analysis. The book
assumes readers know network topologies, the OSI and TCP/IP models, and
have a basic understanding of capturing network data. The book heavily
relies on Linux knowledge.

The reader will learn to set up their infrastructure to obtain flow traffic data
and make the most of this information. The reader will also learn to
understand how to relate to normal and unknown traffic, how to set up tasks

to automate network controls, and how to assess their network in a passive
but proactive way. The reader will acquire the knowledge and skills that
will allow them to be untied by limitations of traditional analysis tools and
embrace a new and scalable way to improve security on high-speed
networks.

I hope you will find this book informative and helpful.

Chapter 1: Foundation of Network Flow Analysis - This chapter lays the
base for conducting network analysis using flow protocols, with a strong
bias towards network security. The reader will learn about the essentials,
important concepts of types of network analysis types, advantages,
scalability, and sustainability of different types of analysis. Additionally, in
this chapter, the reader will learn about the proper tools to get effective
results in each of the different analysis types, focusing on the network flow
analysis. The reader will familiarize himself with the differences between
packet and flow analysis while learning the advantages and disadvantages
of statistical flow analysis.

Chapter 2: Fixed and Dynamic Length Flow Protocols - This chapter
will discuss both the fixed length flow protocols and the dynamic length
flow protocols, their advantages, and drawbacks. The chapter describes
NetFlow v1, NetFlow v5, NetFlow v9, sFlow v5, and IPFIX. By the end,
the chapter will discuss case studies on the protocols’ benefits or misuse
and their identification.

Chapter 3: Network Topologies - This chapter primarily focuses on
various network topologies found in companies and ways to implement
proper flow analysis in different contexts, from classical flat infrastructure
to frontend/backend/DMZ to Virtual Private Clouds and ways to discover
blind points.

Chapter 4: Implementing Flow Export on Layer 2 Devices - This
chapter will guide the reader to implement flow data export on the most
widespread Layer 2 devices (switches and access points) from most vendors
on the market, and will also describe a solution to get NetFlow/IPFIX data
from a switch using port mirroring.

Chapter 5: Implementing Flow Export on Layer 3 Devices - This
chapter will guide the reader to implement flow data export on the most

widespread Layer 3 devices like firewalls, routers, load balancers, and
wireless gateways from most vendors on the market.

Chapter 6: Implementing Flow Export on Servers - This chapter focuses
on solutions for implementing flow export on servers, which may be
required in contexts where you want to see the flow traffic but cannot
manage network infrastructure, like cloud environments or hosting services.

Chapter 7: Implementing Flow Export on Virtualization Platforms -
This chapter focuses on solutions for implementing flow export on
virtualization systems like VMware and Proxmox, which can give you
network visibility in traffic not crossing the network infrastructure (imagine
traffic between different virtual machines on the same hypervisor).

Chapter 8: Ingesting Data into Clickhouse and Elasticsearch - This
chapter shows the user how to ingest raw flow data into more usable and
structured analysis platforms like Elasticsearch and Clickhouse (open-
source high-performance OLAP).

Chapter 9: Flow Data Analysis: Exploring Data for Fun and Profit -
This chapter will discuss how we can do interesting analysis of the flow
data we are getting from the network, and will teach the reader to
understand better what is happening inside their network infrastructure, by
showing a lot of examples. It will also give the reader further in-depth
knowledge about identifying patterns and anomalies, and how to detect
security threats.

Chapter 10: Understanding the Flow Matrix - This chapter introduces an
often too underestimated concept, the matrix of flows happening inside the
company network. A deep dive into the concept will allow the reader to
take advantage of it to improve the security posture of the whole network.

Chapter 11: Firewall Rules Optimization Use Case - This chapter
describes a real use case of NetFlow data to approach a quite complex
problem of firewall optimization rules in a complex (but now becoming
quite common) environment.

Chapter 12: Simple Network Anomaly Detection System Based on Flow
Data Analysis - This chapter focuses on how to identify network anomalies
and data breaches by using the flow matrix and some Python scripting using

Pandas. It will show the reader how to automate continuous checking,
trying to address the problem of the slowness in identifying a breach.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/46sqwki

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Mastering-Network-Flow-Traffic-
Analysis. In case there’s an update to the code, it will be updated on the
existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

https://rebrand.ly/46sqwki
https://github.com/bpbpublications/Mastering-Network-Flow-Traffic-Analysis
https://github.com/bpbpublications
mailto:errata@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, please visit www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insights with the global
tech community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions. We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Foundation of Network Flow Analysis
Introduction
Structure
Objectives
Computer network
Computer network analysis
Common network security threats to company networks
Network security traffic analysis
Techniques for performing network security traffic analysis
Packet inspection network traffic analysis
Network flow-based traffic analysis
Basics of network protection
Firewalls and packet filters
Network proxies
Intrusion detection systems
Intrusion prevention systems
Pros and cons of packet inspection network traffic analysis
Open-source and commercial solutions
Pros and cons of network flow-based traffic analysis

Open-source and commercial solutions
Traffic encryption
Network bandwidth increase

Challenge of analyzing 800 Gbps networks

Conclusion

2. Fixed and Dynamic Length Flow Protocols
Introduction
Structure
Objectives
Different kinds of network flow exporters
Network flow collectors

NetFlow version 1
Limitations of NetFlow vl

NetFlow version 5
Advantages of NetFlow v5

NetFlow version 9
Advantages of NetFlow v9

IPFIX
Advantages of IPFIX

sFlow v5
Advantages of sFlow v5

Differences between fixed and dynamic flow protocols

Conclusion

3. Network Topologies
Introduction
Structure
Objectives
Computer network
Logical and physical design

Main components of a computer network
LAN

WAN

VXLAN

VPN

DMZ/frontend/backend network
Frontend network infrastructure
Backend network infrastructure
Communication between frontend and backend
Demilitarized Zone
Frontend network
Key differences

SDN

Making cloud provider networks
VPC
Placing network probes

Conclusion

4. Implementing Flow Export on Layer 2 Devices
Introduction
Structure
Objectives
Catching network flows on Layer 2
Importance of sFlow
Configuring sFlow export on a Cisco SG350 switch
Configuring sFlow export on an HP switch
Configuring sFlow export on an Huawei switch

Standard way to get flows from anywhere
Types of port mirroring
Use cases
Considerations

Conclusion

5. Implementing Flow Export on Layer 3 Devices
Introduction
Structure
Objectives
Catching network flows on Layer 3
General considerations for the example configurations
Configuring NetFlow v9 export on a Cisco 1721 router with IOS 12.1
Configuring NetFlow v9 export on a Cisco 2800 router with I10S 12.3
Configuring IPFIX export on a Cisco 887 router with IOS 15.4
Configuring IPFIX export on a Cisco ASA firewall
Configuring IPFIX export on a Cisco Firepower firewall
Configuring IPFIX export on a Juniper SRX-100 firewall
Configuring IPFIX export on a Juniper MX router
Configuring NetFlow export on a Palo Alto PA-500 firewall
Configuring IPFIX export on a MikroTik router
Configuring NetFlow v9 export on a Huawei AR150 router

Configuring NetFlow v9 export on a Huawei Eudemon 8000E-X
firewall

Configuring IPFIX export on a Fortinet FG-60 firewall

Configuring IPFIX export on a SonicWALL firewall with SonicOS 7.0
Configuring IPFIX export on a Sophos firewall

Configuring IPFIX export on a Checkpoint firewall

Configuring IPFIX export on a WatchGuard firewall

Configuring IPFIX export on a BigIP F5 load balancer

Conclusion

6. Implementing Flow Export on Servers
Introduction

Structure

Objectives
Catching network flows on Microsoft Windows systems
Catching network flows on Linux and UNIX systems

Conclusion

7. Implementing Flow Export on Virtualization Platforms
Introduction
Structure
Objectives
SDN and its importance in modern virtualization
Open vSwitch
Catching flows on VMware distributed virtual switches
Catching flows on Proxmox VE 7.x/8.x
Catching flows on Canonical MicroStack

Conclusion

8. Ingesting Data into Clickhouse and Elasticsearch
Introduction
Structure
Objectives

Choosing and installing a flow collector
FlOwer
Installing FlOwer and UDP samplicator

Clickhouse
Ingesting data into Clickhouse

Elasticsearch
Ingesting data into Elasticsearch

Conclusion

9. Flow Data Analysis: Exploring Data for Fun and Profit

Introduction

Structure

Objectives

Understanding what we collected
Interacting with Clickhouse
Interacting with Elasticsearch

FlOwer data model
Flows
Events

FlOwer RTE
Traffic classification

Data analysis examples
DNS queries
PAM access

Rogue VTEPs
Out of policy SNMP

Conclusion

10. Understanding the Flow Matrix
Introduction
Structure
Objectives
Flow matrix
Making good use of FlOwer’s flow matrix
Capacity planning
Network security with the flow matrix

Conclusion

11. Firewall Rules Optimization Use Case

Introduction

Structure

Objectives

Scenario

Understanding firewall rules optimization criteria
An interesting discovery

Using simple shell scripting to split flow data

Conclusion

12. Simple Network Anomaly Detection System Based on Flow Data
Analysis

Introduction

Structure

Objectives

Scenario

Common cybersecurity threats

Handling DNS threats

Handling NTP threats

Handling BGP threats

Handling P2P threats

Dealing with TOR threats

Dealing with covert channels

Dealing with horizontal and vertical scans
Dealing with VTEP and SDN controller attacks
Automating checkups

Conclusion

Index

CHAPTER 1

Foundation of Network Flow
Analysis

Introduction

This chapter introduces you to network flow analysis, ways of performing
it, techniques and technologies involved in network security, and their
advantages. Nowadays, technology is playing a pivotal role in the success
of most companies. Moreover, computer-based technology relies on a
strong foundation: computer networks. A famous computer slogan used by
Sun Microsystems' once said The network is the computer. When you
browse the Internet, your computer uses the company’s network to connect
to various websites. Maybe you can reach only some websites, in which
case it means that some sort of network control is already in place, or
maybe you can go anywhere (which does not suggest that controls are not
in place). In any case, if you are in your office, you are connected to the
company's internal network unless you are doing smart work. A network is
simply made by computers with network interfaces, cables, and networking
devices (like hubs, switches, routers, firewalls, etc.), each performing
exactly the task they were developed for.

But what is network security? Simple, with the advent of computer
networks first and the Internet later, protecting internal data and users from
theft and fraud has become increasingly complicated than before. And in

current times, if you read about network security news, there is always a
company that has been hacked or was the victim of malware or data theft.

The interesting fact is that normally, everyone assumes that the internal
network of the company is a safe place without risks or menaces. It is no
surprise that searching zero trust online yields numerous articles; we will
get back to it in the following chapters, but let us just assume that to keep a
network perimeter safe, you must work on it in some way!

Structure

In this chapter we will discuss the following topics:
e Computer network
e Computer network analysis
e Common network security threats to company networks
e Network security traffic analysis
e Techniques for performing network security traffic analysis
e Packet-inspection network traffic analysis
o Network flow-based traffic analysis
e Basics of network protection
» Firewalls and packet filters
e Network proxies
e Intrusion detection systems
e Intrusion prevention systems
e Pros and cons of packet-inspection network traffic analysis
e Open-source and commercial solutions
e Pros and cons of network flow-based traffic analysis
e Open-source and commercial solutions

* Challenge of analyzing 800Gbps networks

Objectives

This chapter will introduce the user to the world of corporate network
security, corporate networking, and the different types of network traffic

analysis, as well as introduce the network flow traffic analysis.

Computer network

A computer network is a collection of interconnected computers and
devices that can communicate with each other, share resources, and
exchange data. These networks can be as small as a few devices at home or
office or as large as the global Internet, connecting billions of devices
worldwide. Computer networks enable the sharing of information,
resources, and services, facilitating communication and collaboration
between users and systems.

Usually, depending on the size of the company, inside networks are split
and deployed in different ways, both on the physical and logical levels.
Normally there are distinct designs for logical and physical, because
modern network devices allow this split distinction. This has several
benefits from the perspective of security and availability of the network
service.

An example of a simple logical split can be in terms of frontend, backend,
and employee networks. These networks can be split into Layer 2 (switches
or VLANSs) and interconnected by routers or firewalls in Layer 3.

Internet

Employees
Frontend

Campany
Firewall

Backend

Figure 1.1: Logical network view

The same network infrastructure, considered on the physical design, can
have different ways to be deployed. In our example, implementing full
redundancy (using proper protocols and configurations) can be as presented
in Figure 1.2:

Internet Internet
ISP #1 ISP #2

Firewall Master Firdwll Backup

Frontend Backend Employees

Figure 1.2: Physical network view

Computer network analysis

Computer network analysis refers to examining and evaluating computer
networks to understand their performance, security, efficiency, and overall
functionality. It involves various techniques and tools to gain insights into

network behavior and make informed decisions about network design,
optimization, troubleshooting, and security.

Here are some key aspects of computer network analysis:

Performance monitoring: Network administrators and analysts use
various monitoring tools to track the performance of a network. This
includes measuring bandwidth utilization, latency, packet loss, and
network throughput. Performance analysis helps in identifying
bottlenecks and optimizing network resources.

Security analysis: Network analysis is crucial for identifying and
mitigating security threats. It involves monitoring network traffic for
suspicious activities, such as intrusion attempts, malware infections,
and unauthorized access. Security analysts use intrusion detection
systems (IDS), firewalls, and other security tools to analyze network
traffic patterns and detect anomalies.

Troubleshooting: When network issues occur, network analysis is used
to diagnose and resolve problems. By examining network traffic, logs,
and configuration settings, administrators can pinpoint the root causes
of network outages, connectivity problems, or performance issues. This
process is essential for maintaining network reliability.

Optimization: Network analysis helps in optimizing network resources
and configurations. By studying traffic patterns and usage data,
administrators can make informed decisions about network design,
capacity planning, and load balancing. This ensures that the network
operates efficiently and cost-effectively.

Capacity planning: Analyzing network usage trends over time helps
forecast future capacity requirements. This is important for ensuring
that the network can handle increased traffic and new applications
without degradation in performance.

Protocol analysis: Network analysts often use packet sniffers and
protocol analyzers to capture and analyze network traffic at a granular
level. This is useful for diagnosing protocol-related issues and ensuring
that network protocols are functioning as expected.

QoS analysis: Quality of service (QoS) analysis involves assessing
the network's ability to deliver different types of traffic with varying

levels of priority. This is crucial for ensuring that real-time applications
like voice and video conferencing receive the bandwidth and low
latency to perform well.

o Traffic engineering: Network analysis is used to optimize traffic
routing and distribution within a network. This is particularly important
in large-scale networks to balance traffic loads and minimize
congestion.

e Network visualization: Visualization tools and techniques are often
used to represent network data graphically. This helps network
administrators and analysts better understand network topologies,
traffic flows, and dependencies.

e Compliance and auditing: Network analysis is also important for
ensuring that a network complies with regulatory requirements and
internal policies. It helps in auditing network activity and maintaining
compliance records.

In summary, computer network analysis is a multidisciplinary field that
involves the use of various tools and methodologies to gain insights into the
performance, security, and efficiency of computer networks. It plays a
crucial role in maintaining the reliability and integrity of modern networks
in an ever-evolving technological landscape. In this book, we are focusing
on the network security topics.

Common network security threats to company networks

Common network security threats, often referred to as cybersecurity threats
or menaces, pose significant risks to computer networks and the data they
contain. These threats can lead to data breaches, financial losses, and
reputational damage for organizations. Here are some of the most common
network security threats:

e Malware: Malware, short for malicious software, includes viruses,
worms, Trojans, ransomware, spyware, and adware. Malware infects
systems and devices, often intending to steal data, damage systems, or
engage in other malicious activities.

e Phishing: Phishing attacks involve sending deceptive emails or
messages that appear from legitimate sources but are designed to trick

recipients into revealing sensitive information, such as login credentials
or financial details.

Social engineering: Social engineering tactics manipulate individuals
into divulging confidential information or performing actions
compromising security. This can include techniques like pretexting,
baiting, and tailgating.

DoS and DDoS attacks: Denial-of-service (DoS) attacks flood a
network or system with traffic to overwhelm and disrupt services.
Distributed denial-of-service (DDoS) attacks involve multiple devices
coordinating an attack, making it even more challenging to mitigate.

Insider threats: Insider threats can come from employees, contractors,
or other individuals with authorized access to a network. These
individuals may intentionally or unintentionally compromise network
security, steal data, or engage in malicious activities.

Data breaches: Data breaches occur when unauthorized parties gain
access to sensitive or confidential data. Breaches can result from
various attacks, including hacking, malware infections, and insider
threats.

SQL injection: SQL injection attacks target web applications by
manipulating input fields to execute malicious SQL queries against a
database. This can lead to unauthorized access to or modification of
data.

MITM attacks: In man-in-the-middle (MITM) attacks, an attacker
intercepts and potentially alters communications between two parties
without their knowledge. This can be used to steal data or gain
unauthorized access.

Zero-day exploits: Zero-day vulnerabilities are software
vulnerabilities that are not yet known to the software vendor or the
public. Attackers can exploit these vulnerabilities before patches or
fixes are available.

Brute force attacks: Brute force attacks involve attempting to guess
passwords or encryption keys by systematically trying all possible
combinations. These attacks can be time-consuming but may
eventually succeed if weak passwords are used.

e Credential theft: Attackers may steal user credentials through various
means, such as keyloggers, credential harvesting, or password reuse
attacks. Once obtained, these credentials can be used for unauthorized
access.

e IoT vulnerabilities: Internet of Things (IoT) devices, often lacking
robust security measures, can be vulnerable to attacks. Compromised
IoT devices can be used as entry points into a network.

e Eavesdropping and sniffing: Attackers may intercept and monitor
network traffic to capture sensitive information, such as login
credentials or data transmitted in plaintext.

* XSS: Cross-site scripting (XSS) attacks exploit vulnerabilities in web
applications to inject malicious scripts into web pages viewed by other
users. These scripts can steal information or perform actions on behalf
of the victim.

e Misconfigured security settings: Incorrectly configured security
settings on network devices, servers, or applications can create
vulnerabilities that attackers can exploit.

To defend against these network security threats, organizations implement a
combination of security measures, including firewalls, intrusion detection
and prevention systems (IDPS), antivirus software, encryption, access
controls, regular software patching, and security awareness training for
employees. Regular monitoring and incident response planning are also
essential to detect and respond to threats promptly.

Network security traffic analysis

Network security traffic analysis is the process of monitoring and inspecting
network traffic to identify and assess potential security threats, anomalies,
and suspicious activities. It involves the examination of data packets,
network flows, and communication patterns to gain insights into the
security posture of a network. The primary goal of network security traffic
analysis is to detect and respond to security incidents in real-time or post-
incident analysis.

Here are key aspects of network security traffic analysis:
e Traffic monitoring: Network security analysts use specialized tools to

capture and monitor network traffic across various network segments,
such as local area networks (LANs) and wide area networks
(WAN:Ss). These tools collect data packets as they traverse the network.

Packet-level analysis: At the most granular level, network security
analysts can examine individual data packets to inspect their content,
source, and destination addresses, port numbers, and protocols. This
level of analysis allows for detailed inspection of network
communication.

Flow-level analysis: Network flows represent conversations or
interactions between devices or systems. Flow analysis involves
tracking these interactions, identifying the participants, and analyzing
the volume and duration of data exchanged. Flow analysis can help
detect patterns indicative of security threats.

Protocol analysis: Analysts scrutinize network protocols to identify
deviations from expected behavior. This includes examining the

behavior of protocols like HTTP, FTP, SMTP, and DNS to detect
suspicious or malicious activity.

Anomaly detection: Network security traffic analysis includes using
anomaly detection techniques to identify unusual or unexpected
network behavior. Deviations from established baselines or statistical
norms may indicate security threats or network issues.

Signature-based detection: Like IDS, network traffic analysis tools
often use signature-based detection to match observed traffic patterns
against known attack signatures. When a match is found, alerts are
generated.

Behavioral analysis: Behavioral analysis focuses on the behavior of
network entities, such as devices, users, and applications. It seeks to
identify unusual or malicious behavior based on historical data and
behavior profiles.

Threat intelligence integration: Threat intelligence feeds and
databases are integrated into traffic analysis tools to provide up-to-date
information about known threats, malware, and indicators of
compromise (I0Cs).

Alerting and reporting: When suspicious or malicious activity is

detected, the network security analysis tools generate alerts or
notifications. These alerts are sent to security personnel for
investigation and response. Detailed reports may also be generated for
post-incident analysis and compliance purposes.

e Incident response: Network security traffic analysis is a critical
component of incident response. When a security incident is
confirmed, analysts use the insights gained from traffic analysis to
understand the scope and impact of the incident and to develop
mitigation strategies.

e Continuous monitoring: Effective network security traffic analysis
involves continuous, real-time monitoring to detect threats as they
happen. Continuous monitoring allows for swift response and
containment of security incidents.

Network security traffic analysis is vital for identifying and mitigating
various security threats, including malware infections, intrusion attempts,
data exfiltration, and other malicious activities. It plays a crucial role in
enhancing an organization's overall cybersecurity posture by providing
visibility into network traffic and helping security teams proactively defend
against cyber threats.

Techniques for performing network security traffic analysis

Network security traffic analysis 1s a critical aspect of maintaining the
security of computer networks. It involves monitoring and examining
network traffic to identify and mitigate potential threats, anomalies, and
vulnerabilities. Here are some techniques for performing network security
traffic analysis:

o Packet inspection: It normally works by analyzing all traffic contents,
inspecting every single traffic packet, at different levels depending on
packet type.

o DPI: Analyzing the content of individual network packets to detect
suspicious or malicious activity. Deep packet inspection (DPI) can
identify specific protocols, applications, and even malware
signatures.

Flow analysis:

o NetFlow analysis: Examining network flow (NetFlow) records to
understand traffic patterns, detect anomalies, and identify potential
security incidents.

o sFlow/J-Flow/IPFIX: Similar to NetFlow, the protocols Sampled
Flow (sFlow), Juniper Flow (J-Flow), Internet Protocol Flow
Information Export (IPFIX) provide flow data for analysis.

Signature-based detection:

o IDS: Utilizing predefined signatures or patterns to identify known
attacks and threats. Examples include Snort and Suricata.

Behavioral analysis:

o Anomaly detection: Establishing a baseline of normal network
behavior and then flagging any deviations from that baseline as
potential threats. Tools like anomaly-based IDS or security
information and event management (SIEM) systems are used.

Heuristic analysis:

o Heuristic IDS/IPS: Employing rule-based systems that look for
patterns or behaviors indicative of attacks. These are more flexible
than signature-based methods but can generate false positives.

Machine learning and Al:

o Machine learning models: Training models to recognize unusual
network behavior by analyzing historical data and identifying
deviations from established norms.

Al-powered threat detection: Using artificial intelligence to identify
complex and evolving threats that may not have known signatures.

Protocol and port analysis:

o Monitoring network protocols and port usage to detect unusual or
unauthorized network traffic.

Payload inspection:

o Examining the payload of network packets or packets themselves

for malicious content or [0Cs.
DNS analysis:

o Investigating Domain Name System (DNS) traffic for signs of
malicious domains, DNS tunneling, or data exfiltration.

SSL/TLS decryption:

o Decrypting and inspecting encrypted traffic ensures that malicious
activities are not hiding within encrypted connections.

NetFlow and packet capture:

o Collecting and storing network traffic data for analysis and forensic
purposes. Tools like Wireshark are commonly used for packet
capture.

Log analysis:

o Reviewing logs generated by network devices, servers, and
applications for indications of security incidents.

SIEM integration:

o Integrating network security traffic analysis with SIEM systems to
correlate network events with other security data sources.

Threat intelligence feeds:

o Subscribing to threat intelligence feeds to stay updated on known
threats and 1oCs and then using this data for analysis.

User and entity behavior analytics (UEBA):

o Focusing on analyzing user and entity behavior to detect insider
threats and unusual user activities.

Packet filtering and firewall rules:

o Implementing access control lists (ACLs) and firewall rules to
restrict or allow traffic based on predefined criteria.

Honeypots and honeytokens:

o Deploying honeypots or honeytokens within the network to attract

and identify malicious activity and potential attackers.
e Vulnerability scanning:

o Scanning the network for known vulnerabilities and assessing their
potential impact on security.

e Continuous monitoring:

o Maintaining ongoing, real-time monitoring of network traffic to
quickly respond to emerging threats.

e Incident response:

o Developing incident response plans and procedures to effectively
respond to and mitigate security incidents identified through traffic
analysis.

These techniques can be used individually or in combination to create a
comprehensive network security traffic analysis strategy tailored to the
specific needs and risks of an organization. Regularly updating and
adapting these techniques is essential to keep pace with evolving cyber
threats.

Packet inspection network traffic analysis

Packet inspection, also known as packet-level network traffic analysis or
passive network analysis, is a method of analyzing individual network
packets to gain insights into network activities, identify potential security
threats, and troubleshoot network issues. This technique involves capturing
and inspecting the content of packets as they traverse a network. Here is a
more detailed description of packet inspection in network traffic analysis:

e Packet capture: Packet inspection begins with the collection of
network packets. This can be done using tools such as packet capture
software (for example, Wireshark) or network monitoring devices (for
example, network taps or packet brokers).

e DPI: DPI is the process of analyzing the actual content of each packet,
including its headers and payload. This in-depth examination allows for
the identification of specific protocols, applications, and potentially

malicious content within the packets.

e Protocol identification: DPI can determine the protocols being used
within the network traffic, including HTTP, SMTP, FTP, DNS, and
more. This information is crucial for understanding the nature of the
traffic and identifying any anomalies.

e Application recognition: DPI can also identify specific applications
and services based on the traffic patterns and signatures within the
packets. For example, it can distinguish between web browsing, email
traffic, and file transfers.

» Signature-based threat detection: Signature-based detection involves
comparing the content of packets against known patterns or signatures
of known threats, such as malware or intrusion attempts. If a match is
found, it can trigger an alert.

e Content inspection: DPI allows for the inspection of packet payloads,
which can reveal potentially malicious content, such as malware
downloads, command and control communications, or sensitive data
being transmitted.

o Traffic analysis: By examining packet headers, DPI can provide
insights into the source and destination IP addresses, ports, and traffic
patterns. This information can help detect suspicious or unauthorized
network activities.

e Real-time monitoring: Packet inspection is often performed in real-
time, enabling network administrators and security analysts to respond
quickly to emerging threats or issues.

 Log generation and reporting: Logs and reports are typically
generated as a result of packet inspection. These logs can be used for
compliance, forensics, and incident response purposes.

e Performance considerations: Packet inspection can be resource-
intensive, especially in high-traffic networks. It may impact network
performance, so careful planning and optimization are necessary.

e Encrypted traffic decryption: In cases where traffic is encrypted (for
example, HTTPS), decryption may be necessary to perform effective
packet inspection. SSL/TLS decryption tools are used for this purpose.

Packet inspection is a powerful technique for understanding network

behavior, identifying security incidents, and ensuring network performance.
However, it is important to use it responsibly and in compliance with
privacy and legal considerations, especially when dealing with the content
of network communications. Additionally, combining packet inspection
with other network security measures, such as IDS and intrusion
prevention systems (IPS), can provide a more comprehensive defense
against threats.

Network flow-based traffic analysis

Network flow-based traffic analysis is a technique used to monitor and
analyze network traffic by examining data flows or connections between
devices or systems on a network. Instead of inspecting individual packets,
this approach focuses on aggregating and analyzing information about these
flows. Here is a more detailed description of network flow-based traffic
analysis:

e Flow definition: A network flow typically represents a unidirectional
sequence of packets between a source and a destination over time. A
flow is identified by several attributes, including source and destination
[P addresses, source and destination ports, protocol (for example, TCP
or UDP), and the ingress and egress interfaces.

e Flow data collection: Flow-based analysis relies on collecting flow
data from network devices, such as routers, switches, and specialized
flow collectors. Common flow data formats include NetFlow (used by
Cisco devices), sFlow, J-Flow, and IPFIX.

e Flow record generation: Network devices (but not only) generate flow
records, which contain information about each observed flow. These
records typically include details like timestamps, packet and byte
counts, TCP flags, and various metadata.

e Aggregation and summarization: Flow records are aggregated and
summarized to provide a high-level view of network traffic. This can
include statistics on top talkers, top applications, and traffic volume
between specific endpoints.

e Traffic profiling: By analyzing flow data, network administrators can
profile network traffic patterns. This helps in understanding typical

usage, peak usage times, and identifying deviations or anomalies.

 Anomaly detection: Network flow-based analysis can be used to
detect anomalies in network traffic, such as unusually large amounts of
traffic, unexpected communication patterns, or changes in protocol
usage. These anomalies may indicate security incidents or network
issues.

e Bandwidth monitoring: Flow analysis can provide insights into
bandwidth utilization. By examining flow records, administrators can
identify bandwidth hogs or network congestion issues.

o Application identification: Flow data can be used to identify the
applications and services running on the network. This is done by
mapping flow characteristics to known application behaviors and
signatures.

e Threat detection: Flow-based analysis can help detect certain network
threats, including DDoS attacks, port scans, and suspicious
communication patterns that may indicate malware infections.

* Flow correlation: Correlating flow data with other security
information, such as intrusion detection alerts or log data, can provide a
more comprehensive view of network security incidents.

e Capacity planning: Understanding network flow patterns and trends
can aid in capacity planning, helping organizations scale their network
infrastructure to meet future demands.

e Compliance and reporting: Flow data can generate reports for
compliance purposes, such as demonstrating adherence to security
policies or data retention requirements.

Network flow-based traffic analysis (for example, Source IP: 192.168.1.1,
Source Port: 53215, Dest IP: 10.0.0.1, Protocol: TCP, Dest. Port: 80, Bytes:
500 and so on) offers a more scalable and less resource-intensive approach
compared to DPI. It is particularly valuable for gaining insights into overall
network behavior and identifying trends and potential issues. However, it
may not provide the same level of detail as DPI when inspecting the content
of individual packets, making it more suitable for certain types of analysis,
such as traffic profiling and trend analysis.

Basics of network protection

As of today, it is almost certain that every company deployed some type of
network protection to try to mitigate some of the more common threats we
described before. The first form of protection 1s a good network design,
both on the physical and both on the logical point of view. Once this design
1s implemented, it is quite common for companies to deploy one or more of
the following solutions to protect their inside networks.

Firewalls and packet filters

A firewall is a network security device or software application designed to
monitor and control incoming and outgoing network traffic based on an
organization's predefined security rules or policies. The primary purpose of
a firewall 1s to act as a barrier between a trusted internal network (such as a
corporate network) and untrusted external networks (such as the Internet),
allowing authorized traffic to pass while blocking or inspecting potentially
harmful or unauthorized traffic.

Firewalls can be implemented in various forms, including hardware
appliances, software applications, and virtual appliances. They operate at
different layers of the network stack, including:

e Packet filtering firewall: These firewalls examine individual packets
of data as they travel through the network and make filtering decisions
based on criteria such as source and destination IP addresses, port
numbers, and protocol types. Packet filtering firewalls are typically the
simplest and fastest type of firewall but provide limited security
because they don't inspect the content of packets.

o Stateful inspection firewall: Also known as dynamic packet filtering
firewalls, these devices keep track of the state of active connections
and make filtering decisions based on the state of the connection. They
are more advanced than packet-filtering firewalls and provide
improved security because they understand the context of network
traffic.

e Proxy firewall: Proxy firewalls act as intermediaries between internal
and external networks. They receive and forward network requests on

behalf of clients, making it more challenging for attackers to directly
access internal resources. Proxy firewalls can also inspect and filter
application-layer traffic, providing better security for specific
applications.

e NGFW: Next-generation firewall (NGFWs) combines traditional
firewall features with advanced security capabilities such as intrusion
detection and prevention, deep packet inspection, and application-layer
filtering. They can identify and control specific applications and
perform more granular security checks.

Firewalls use a set of rules or policies to determine which traffic should be
allowed, denied, or inspected. These rules are typically based on factors like
source and destination [P addresses, port numbers, protocol types, and
application-layer information. Firewalls can be configured to allow or block
traffic based on a default-deny or default-allow policy, depending on the
organization's security requirements.

Key functions and benefits of firewalls include:

e Access control: Firewalls control access to a network, allowing
administrators to define which systems and services are accessible
from the outside world.

o Traffic inspection: They inspect network traffic for suspicious patterns
or known threats and can block or alert about malicious activity.

e Protection from unauthorized access: Firewalls protect against
unauthorized access and help prevent data breaches and cyberattacks.

* Network segmentation: They can segment networks into different
security zones, isolating sensitive systems from less secure areas.

e Logging and reporting: Firewalls often provide logging and reporting
capabilities, allowing administrators to monitor network activity and
analyze security events.

In summary, firewalls are a fundamental component of network security,
serving as a crucial defense mechanism to protect networks and the data
they contain from unauthorized access and cyber threats. They are a key
element of any organization's cybersecurity strategy.

Network proxies

Another key security tool is the network proxy, acting as an intermediary
between users and the Internet. A network proxy, often simply referred to as
a proxy, is an intermediary server or software application that acts as a
gateway between a user's device (such as a computer or smartphone) and
the Internet. When a user makes a request to access a website or a service
on the Internet, the request is first sent to the proxy server, which then
forwards the request to the target server or resource on behalf of the user.
Here are some key functions and purposes of network proxies:

Anonymity: Proxies can hide a user's real IP address and location from
the websites or services they access. This is often used for privacy and
security reasons.

Content filtering: Proxies can be configured to filter and block access
to specific websites or content categories. This is commonly used in
organizations to enforce Internet usage policies.

Load balancing: In a network with multiple servers providing the
same service (for example, web servers), a proxy can distribute
incoming requests among these servers to balance the load, improve
performance, and ensure high availability.

Caching: Proxies can store copies of frequently accessed web pages
and resources locally. When a user requests a cached resource, the
proxy can serve it directly, reducing the load on the target server and
speeding up access to content.

Security: Proxies can act as a security layer by inspecting incoming
and outgoing traffic for malicious content, such as malware or phishing
attempts. They can block or filter out threats before they reach the user.

Access control: Proxies can enforce access controls and authentication,
allowing or denying access to specific users or groups based on
predefined policies.

Bypassing geographical restrictions: Users can use proxies to access
content or services that may be restricted or geo-blocked in their
region. By connecting to a proxy server in a different location, they can
appear to be browsing from that location.

Monitoring and logging: Proxies can record and log network traffic,
providing administrators with visibility into user activities and potential

security incidents.

* Network optimization: Proxies can compress and optimize data
traffic, reducing bandwidth consumption and improving the
performance of slow or congested network connections.

e Protocol conversion: Some proxies can translate between network
protocols, allowing incompatible devices or applications to
communicate effectively. As example, this could allow older systems to
use certain modern applications.

There are various types of proxies, including HTTP proxies, SOCKS
proxies, transparent proxies, and reverse proxies, each with specific use
cases and functionalities. The choice of proxy type depends on the intended
purpose, such as web browsing, anonymous browsing, or network security.
Proxies are commonly used in both corporate environments and personal
settings to achieve different networking and security goals.

Intrusion detection systems

An IDS is a security technology used to monitor and analyze network traffic
or system activity for signs of unauthorized access, misuse, or malicious
activities. The primary purpose of an IDS is to detect security incidents and
potential security threats within a network or on a host system. It is a crucial
component of an organization's overall cybersecurity strategy.

Here 1s how an IDS works:

e Data collection: The IDS collects data from various sources within a
network or on a host system. These sources can include network traffic,
system logs, and event data generated by applications, devices, and
other network components.

e Traffic analysis: In the case of a network-based IDS (NIDS), the
system continuously analyzes network traffic passing through it. It
examines packets of data to identify suspicious patterns, such as known
attack signatures, anomalies, or deviations from normal network
behavior. In the case of a host-based IDS (HIDS), the system monitors
activities on a specific host or server. It reviews system logs, file
system changes, registry modifications, and other host-related events.

e Signature-based detection: One common method used by IDS is

signature-based detection. This approach involves comparing observed
data patterns to a database of known attack signatures. If a match is
found, the IDS generates an alert. Signature-based detection is effective
against known threats but may not detect new or previously unseen
attacks.

 Anomaly-based detection: Anomaly-based detection involves
establishing a baseline of normal network or system behavior and then
flagging deviations from this baseline as potential threats. Anomalies
can indicate novel or previously unknown attacks, making this
approach valuable for detecting zero-day vulnerabilities. However, it
can also produce false positives if the baseline is not well-defined.

e Heuristic and behavioral analysis: Some IDS use heuristic analysis to
identify patterns of behavior indicative of attacks. This approach looks
for patterns that may not match known signatures but still exhibit
suspicious or malicious characteristics.

e Alert generation: When the IDS detects suspicious activity or a
potential intrusion, it generates alerts. These alerts may include
information about the nature of the activity, the source and destination
addresses, and the severity of the threat. Alerts are typically sent to a
security operations center (SOC) or a designated security team for
further investigation.

* Response and mitigation: After receiving an alert, security analysts
investigate the incident to determine its severity and impact. Depending
on the organization's policies and the nature of the threat, various
actions may be taken, such as isolating affected systems, blocking
malicious IP addresses, or implementing security patches.

e Logging and reporting: IDS systems maintain logs of detected events
and incidents. These logs are crucial for post-incident analysis,
compliance reporting, and continuous improvement of security
policies.

There are two main types of IDS:

o NIDS: NIDS monitors network traffic at key points on the network,
such as at the perimeter or within critical network segments. It is well-
suited for detecting threats that traverse the network, such as network

attacks and malicious traffic.

e HIDS: HIDS is installed on individual host systems, such as servers or
endpoints. It focuses on monitoring activities specific to the host it
protects, making it effective at detecting host-level threats, such as
unauthorized access or malware infections.

In summary, an IDS is a critical cybersecurity tool that helps organizations
identify and respond to security threats by monitoring and analyzing
network traffic or host activity. It plays a vital role in maintaining network
and system security and is often used with other security measures like
firewalls and IPS.

Intrusion prevention systems

Building on IDS concepts, IPS take the proactive approach instead of a
monitoring only one. An IPS is a network security technology and device or
software application that goes beyond the capabilities of an IDS by actively
preventing and blocking potential security threats and attacks in real time.
While an IDS focuses on detecting and alerting suspicious or malicious
network activity, an IPS takes a proactive approach by automatically taking
action to stop or mitigate identified threats.

Here is how IPS works:

e Traffic inspection: The IPS continuously inspects network traffic,
examining packets, sessions, and application-layer data to identify
patterns or behaviors that may indicate an attack or security breach.

e Signature-based detection: Similar to an IDS, an IPS uses signature-
based detection to compare observed traffic patterns with a database of
known attack signatures. If it identifies a match, it generates an alert
and takes predefined actions to block or mitigate the threat.

e Anomaly-based detection: An IPS can also employ anomaly-based
detection by establishing a baseline of normal network behavior.
Deviations from this baseline are flagged as potential threats.
Anomaly-based detection is useful for identifying unknown or zero-day
attacks but may produce false positives.

e Behavioral analysis: Some IPS systems use behavioral analysis to
identify suspicious behavior that may not match known signatures but

still indicates malicious intent. This approach looks for patterns that
deviate from expected behavior.

* Automatic blocking: The key differentiator of an IPS is its ability to
automatically block or mitigate threats in real-time. When the IPS
detects a potential attack, it can take various actions, including:

e Dropping or blocking malicious packets: The IPS can prevent
malicious packets from reaching their intended destination, effectively
stopping the attack at the network level.

o Alerting: The IPS can generate alerts to notify security teams of
detected threats and actions taken.

e Connection reset: In the case of an established connection determined
to be malicious, the IPS can send a reset signal to terminate the
connection.

e Rate limiting: The IPS can limit the rate of certain types of traffic to
prevent flooding attacks, such as DDoS attacks.

e Logging and reporting: Like an IDS, an IPS maintains logs of
detected events and actions taken. These logs are essential for incident
analysis, compliance reporting, and auditing.

e Integration: IPS solutions can often integrate with other security
technologies, such as firewalls and SIEM systems, to provide a more
comprehensive security posture.

IPS are deployed at various points within a network, including at the
network perimeter, within network segments, and on individual endpoints.
They are an important component of a multi-layered security strategy and
work alongside firewalls, antivirus software, and other security measures to
protect against a wide range of cyber threats.

By actively blocking malicious traffic and attacks in real-time, IPS systems
help organizations enhance their network security and reduce the risk of
security breaches and data loss.

Pros and cons of packet inspection network traffic analysis

Packet inspection network traffic analysis, often referred to as packet-level
analysis or packet inspection, involves examining the individual packets of

data that flow through a network to gain insights into network activity. This
approach has its own set of pros and cons.

The pros are as follows:

Granular visibility: Packet inspection provides the most detailed level
of visibility into network traffic. It allows you to see the actual data
packets, including their contents, headers, and source/destination
information. This granularity is crucial for troubleshooting and security
analysis.

Accurate threat detection: Packet inspection is highly effective for
detecting network threats and anomalies. It can identify malware,
intrusion attempts, and suspicious traffic patterns that may be missed
by other, less granular monitoring techniques.

Forensic analysis: When a security incident occurs, packet-level
analysis 1s invaluable for forensic investigation. It provides a detailed
record of network activity, which can be crucial for understanding the
scope and impact of a security breach.

Protocol analysis: Packet inspection allows for in-depth analysis of
network protocols, helping to identify protocol-specific issues,
misconfigurations, or performance bottlenecks.

Customization: Analysts can customize packet inspection tools and
filters to focus on specific aspects of network traffic, which is
particularly useful for meeting the unique needs of an organization or
network.

The cons are as follows:

Resource intensive: Packet inspection can be very resource intensive.
It requires specialized hardware and software tools to capture, store,
and analyze large volumes of network packets. This can lead to high
infrastructure costs.

Privacy concerns: Examining the contents of network packets can
raise privacy concerns. It may involve inspecting sensitive data, such as
user communications or application payloads, which can lead to legal
and ethical issues if not handled carefully.

Complexity: Analyzing network packets is complex and requires
expertise. Network administrators and security analysts need a deep

understanding of networking protocols and packet-level details, which
can be a barrier to entry for some organizations.

e Performance impact: In high-traffic networks, capturing and
inspecting every packet can introduce latency and affect network
performance. It is important to strike a balance between visibility and
performance.

e Limited scalability: Packet inspection is challenging to scale for large
networks with high volumes of traffic. It may not be feasible to inspect
every packet in such environments, which can limit its effectiveness.

e Encrypted traffic: With the increasing use of encryption (for example,
TLS/SSL), packet inspection becomes less effective at inspecting the
contents of encrypted packets. This can make it challenging to detect
threats hiding within encrypted traffic.

In summary, packet inspection network traffic analysis provides
unparalleled visibility and accuracy for network monitoring and security but
comes with significant resource and complexity challenges. Organizations
should consider their specific needs and limitations before implementing
packet-level analysis as part of their network monitoring and security
strategy.

Open-source and commercial solutions

Packet-level network analysis is crucial for understanding network traftic
and diagnosing issues. Several open-source tools are available for
performing packet-level network analysis. Here are some popular ones:

e Wireshark: Wireshark is one of the most widely used and powerful
open-source packet analyzers available. It allows you to capture,
dissect, and analyze network packets in real-time. Wireshark is
available for various platforms and supports a wide range of protocols.

e tcpdump: tcpdump is a command line packet analyzer available for
Unix-based systems. It can capture packets and display them in a
human-readable format. tcpdump is often used in combination with
other tools for more in-depth analysis.

e Tshark: Tshark is the command line version of Wireshark and comes
bundled with Wireshark. It provides similar packet analysis capabilities

but is intended for use in scripts and automated tasks.

Arkime?: Arkime is an open-source full packet capture and indexing
system that can also be used for flow-based network traffic analysis. It
provides capabilities for storing and querying flow data.

Suricata: Suricata is an open-source IDS and IPS that can capture and
analyze network packets. It is primarily focused on detecting network
threats and malicious activity.

Snort: Snort is another open-source IDS that can be used for packet
analysis. It is highly configurable and can be used to monitor network
traffic for suspicious patterns and signatures.

ChopShop*: ChopShop is an extensible packet analysis framework that
allows you to create and share packet analysis modules. It is designed
for security researchers and analysts.

NetworkMiner: NetworkMiner is a network forensic analysis tool that
can parse captured network traffic and extract useful information like
hostnames, usernames, and file artifacts.

Xplico*: Xplico is an open-source network forensic analysis tool that
can extract data from captured network traffic and provide insights into
various protocols, such as HTTP, SIP, and IMAP.

Darkstat: Darkstat is a network traffic analyzer that collects network
statistics and presents them in a web-based interface. It is useful for
monitoring and visualizing network traffic trends.

These open-source tools vary in features, complexity, and use cases, so you
should choose the one that best suits your specific requirements for packet-
level network analysis.

There are also several commercial products available that can perform
packet-level network analysis. Here are some popular options:

e SolarWinds network performance monitor: SolarWinds offers
various network monitoring and analysis tools, including network
performance monitor (NPM). NPM can provide packet-level analysis
capabilities to help diagnose and troubleshoot network issues.

e Riverbed SteelCentral Packet Analyzer: This commercial product by

Riverbed offers packet-level analysis for network troubleshooting and
performance monitoring. It provides insights into network traffic and

helps identify problems affecting network performance.

e NETSCOUT nGeniusONE: NETSCOUT'S nGeniusONE platform
offers packet-level analysis and real-time monitoring of network traffic.
It is designed to help organizations optimize network performance and
troubleshoot issues.

e Colasoft Capsa: Capsa is a network analyzer by Colasoft that provides
packet-level analysis and network monitoring. It is available in various
editions, including a free version with limited features.

e WildPackets (Savvius) Omnipeek: Omnipeek is a packet-level
network analyzer that offers comprehensive network troubleshooting
and analysis capabilities. It can capture and dissect packets in real time.

e NETSCOUT InfiniStreamNG: This product by NETSCOUT is
designed for high-speed packet capture and analysis. It is suitable for
organizations with large and complex networks.

* Cisco Stealthwatch: Cisco's Stealthwatch is a network traffic analysis
solution that offers both flow-based and packet-level analysis for
security monitoring and threat detection.

e ExtraHop Reveal(x): ExtraHop's Reveal(x) provides real-time
network traffic analysis, including packet-level insights. It focuses on
security and threat detection within the network.

* Plixer Scrutinizer: Plixer offers Scrutinizer, a network traffic analysis
and flow monitoring solution that provides packet-level analysis for in-
depth troubleshooting.

Remember that the choice of a packet-level network analysis tool should be
based on your specific needs, budget, and the scale of your network.
Additionally, some tools may offer additional features beyond packet-level
analysis, such as security monitoring, application performance
management, and historical data retention, so consider those factors when
making your decision.

Pros and cons of network flow-based traffic analysis

Network flow-based traffic analysis is a method used to monitor and
analyze network traffic by examining the flow of data packets within a

network. It involves collecting information about the source, destination,
volume, and timing of data flows. While it has several advantages, it also
has its limitations. Here are the pros and cons of network flow-based traffic
analysis.

The pros are as follows:

Efficient data reduction: Network flow analysis reduces the vast
amount of raw network traffic data into manageable and meaningful
flow records. This helps in efficient storage and processing of network
traffic information.

Scalability: Flow-based analysis can scale effectively to large and
complex networks, making it suitable for enterprise-level and data
center environments.

Anomaly detection: It is effective for identifying anomalies in network
traffic patterns. Sudden spikes in data volume or unusual
communication patterns can be detected, which may indicate security
threats or network issues.

Resource efficiency: Flow-based analysis consumes fewer network
resources compared to full packet capture and inspection, making it
less intrusive and more suitable for high-speed networks.

Real-time monitoring: It provides real-time visibility into network
traffic, allowing network administrators to promptly respond to issues
and security threats.

Compliance and reporting: Flow data can be useful for compliance
requirements and generating network performance reports.

The cons are as follows:

Limited payload data: Network flow analysis typically does not
capture the content of packets, including the payload. This means that
it cannot detect threats or anomalies that are hidden within encrypted
traffic or require packet-level inspection.

Lack of granularity: Flow-based analysis may not provide detailed
information about specific packet-level events, making it less suitable
for in-depth packet-level troubleshooting or forensic analysis.

False positives: Depending on the flow aggregation and sampling rate,
network flow analysis can produce false positives or miss subtle

network anomalies.

* Resource intensive: While less resource-intensive than full packet
capture, flow-based analysis still requires dedicated hardware and
storage for processing and storing flow records, especially in high-
traffic environments.

e Limited protocol support: Flow-based analysis may not capture
information about all protocols, particularly if the network uses non-
standard or proprietary protocols.

e Intrusive sampling: To manage resource consumption, flow-based
analysis often relies on sampling, which means not all traffic is
analyzed. This could lead to some traffic being missed.

In summary, network flow-based traffic analysis offers a balance between
efficiency and visibility in monitoring network traffic. It is valuable for
detecting certain network issues and anomalies but may not be suitable for
all use cases, especially those requiring deep packet inspection or analysis
of encrypted traffic. Organizations should consider their specific needs and
constraints when choosing a network traffic analysis approach.

Open-source and commercial solutions

There are several open-source network flow-based analysis tools available
that allow organizations to monitor and analyze network traffic using flow
data. These tools offer various features for gaining insights into network
behavior, identifying anomalies, and enhancing security. Here are some of
the main open-source network flow-based analysis tools:

e nfdump: nfdump is a popular open-source tool that collects and
processes flow data, such as NetFlow and IPFIX. It provides options
for visualization, reporting, and querying flow records.

* Yet Another Flowmeter (YAF): YAF is an open-source flow-based
network traffic analysis tool that can process and analyze various flow
formats. It offers features for network monitoring, security analysis,
and reporting.

e System for Internet-Level Knowledge (SiLK): SiLK is an open-
source suite of flow analysis tools developed by the CERT Division of
the Software Engineering Institute. It supports flow collection, storage,

and analysis for security and network monitoring purposes.

Softflowd: Softflowd is an open-source flow exporter that captures
flow data and exports it in NetFlow format. It is designed to be
lightweight and efficient for resource-constrained environments.

Argus: Argus is an open-source network audit tool that collects and
processes flow data, providing insights into network communication,
behavior, and performance.

Keep in mind that open-source tools might require more hands-on setup and
customization compared to commercial solutions, but they offer flexibility
and cost savings for organizations willing to invest time in deployment and
maintenance.

Several commercial network flow-based analysis tools are also available to
help organizations monitor and analyze network traffic using flow data.
These tools offer various features for understanding network behavior,
identifying anomalies, and enhancing security. Here are some of the main
commercial network flow-based analysis tools:

SolarWinds NetFlow traffic analyzer: SolarWinds offers a NetFlow
traffic analyzer that provides real-time monitoring and analysis of
network traffic using flow data. It offers insights into network
bandwidth usage, application traffic, and communication patterns.

Plixer Scrutinizer: Plixer's Scrutinizer is a flow analysis and network
monitoring tool that supports various flow formats, including NetFlow
and IPFIX. It offers real-time visualization, reporting, and security
insights.

Kentik network observability cloud: Kentik's platform offers flow-
based network observability, helping organizations monitor and
analyze network performance, detect anomalies, and optimize network
resources.

ManageEngine NetFlow analyzer: NetFlow analyzer by
ManageEngine provides comprehensive flow-based analysis for
network traffic monitoring, application identification, capacity
planning, and security threat detection.

Flowmon solution: Flowmon offers network performance and security
monitoring solutions that leverage flow data to provide insights into

network behavior, application usage, and potential security incidents.

e Riverbed SteelCentral NetProfiler: Riverbed's NetProfiler is a flow
analysis solution that offers wvisibility into network performance,
application behavior, and communication patterns for troubleshooting
and optimization.

e InfoVista Ipanema SD-WAN: InfoVista's Ipanema SD-WAN platform
uses flow data to monitor application performance, analyze network
traffic, and prioritize critical applications over the network.

e Cisco Stealthwatch: Cisco's Stealthwatch is a network security
solution that leverages flow data for threat detection, anomaly
detection, and incident response. It focuses on identifying malicious
activities and potential security breaches.

e NETSCOUT nGeniusONE: NETSCOUT'S nGeniusONE platform
combines flow-based analysis with packet-level visibility to provide
insights into network performance, security, and application behavior.

o ExtraHop Reveal(x): ExtraHop offers a network detection and
response platform that uses flow data along with real-time packet
analysis to provide security insights, threat detection, and investigation
capabilities.

e Flower® : It is a hybrid commercial/open-source solution that has
several innovations not yet seen in big players, very innovative and
focusing on network security. Simple and easy flow-matrix creation,
Network Probabilistic Application Recognition (NPAR) and traffic
classification rules (beside tons of other features) are very effective in
network understanding and monitoring.

When evaluating commercial network flow-based analysis tools, consider
factors such as the supported flow formats, scalability, real-time analysis
capabilities, reporting features, integration options, and pricing. It is also
important to assess whether the tool aligns with your organization's specific
network environment, security requirements, and performance monitoring
needs.

As you have probably seen, there are several tools, techniques and ways to
improve network security. Tools nowadays are not strictly so vertical on one
technology and often incorporate different ones. As an example, let us

consider Darktrace, it works basically using packet-level network analysis
but makes use of machine learning to improve its detection mechanism.
What should be clear is that there is not a single good for everything tool or
technique that suits all needs, but you need to understand very well what
you are planning to control, its bandwidth, your budget and concrete facts.

Traffic encryption

Over time, a significant portion of Internet traffic has shifted to using
encryption, primarily through protocols like HTTPS (TLS/SSL) for web
traffic, which prevents the content of the communication from being easily
readable by network sniffers. This encryption is intended to enhance
security and privacy by ensuring that sensitive data is transmitted securely.

Consider the following reasons:

e Rapid growth: The adoption of encrypted protocols, such as HTTPS,
has been steadily increasing over the years. Major initiatives like Let's
Encrypt have contributed to this growth by making it easier for website
owners to obtain and implement SSL/TLS certificates for their
domains.

e Browser push: Major web browsers, including Google Chrome,
Morzilla Firefox, and others, have been actively pushing for secure
connections. They often mark non-encrypted websites with warnings
and prioritize encrypted sites in search rankings.

e HTTPS usage: By 2020, a significant portion of web traffic already
used HTTPS. According to the Mozilla Observatory's statistics, over
90% of page loads in the United States were encrypted using HTTPS.

e Popular websites: Many popular websites and online services have
transitioned to HTTPS, including social media platforms, e-commerce
websites, and online banking services.

e Encrypted applications: Beyond web traffic, many applications and
services, including messaging apps and VPNs, use encryption to secure
data in transit.

e Regulatory compliance: Various regulations and privacy laws, such as
the General Data Protection Regulation (GDPR) in Europe,
encourage encryption to protect user data.

The widespread adoption of encryption does indeed pose a challenge for
passive network traffic analysis, as traditional packet sniffing tools are
unable to decipher the encrypted content directly. While encryption makes
it more difficult to analyze the actual payload of the traffic, there are still
aspects of network traffic that can be analyzed, even when encrypted:

Metadata analysis: Even when the content of the communication is
encrypted, metadata such as source and destination IP addresses, port
numbers, packet sizes, and communication patterns can still be
captured and analyzed. This information can provide insights into the
nature of communication, the parties involved, and the volume of
traffic, revealing recurring patterns like command and control
(C&C), The Onion Router (TOR) connections and/or DDoS traffic
by simply investigating spikes in small patterns

TLS inspection: Some security solutions, like IDPS and NGFW, are
equipped with TLS inspection capabilities. In certain conditions, they
can decrypt and analyze encrypted traffic to detect malicious payloads
or activities. However, this process requires careful implementation and
can raise privacy and compliance concerns.

Certificate analysis: Analyzing the certificates used in encryption can
provide information about the websites being accessed, the entities
providing the certificates, and the encryption protocols being used.

Flow analysis: Flow-based analysis, which focuses on tracking the
connections and behaviors between endpoints, can provide insights into
communication patterns and anomalies, even when the actual payload
1s encrypted.

Threat intelligence and behavior analysis: Some security solutions
leverage threat intelligence and behavioral analysis to identify potential
threats based on patterns of communication, known malicious domains,
or other indicators.

Anomaly detection: By establishing baselines of normal network
behavior, anomalies in encrypted traffic can still be detected, such as
unusual patterns of traffic volume or communication.

Endpoints and host analysis: Endpoint-based security solutions can
analyze encrypted traffic once it reaches the endpoint, allowing for

more comprehensive inspection and analysis.

While encryption does pose challenges to traditional passive network traffic
analysis, the security community continues to develop methods and
techniques to adapt to this evolving landscape. Organizations looking to
perform network analysis in encrypted environments often turn to a
combination of traffic analysis techniques, behavioral analysis, and
endpoint security solutions to gain meaningful insights despite the
encryption barriers.

Network bandwidth increase

The average backbone speeds within networks can vary significantly based
on factors such as geographic location, network infrastructure, technology
advancements, and the type of network (for example, enterprise, data
center, ISP backbone). However, we can provide you with a general
overview of the trends and speeds that were commonly seen in network
backbones up to that point:

e Enterprise networks: In enterprise environments, backbone speeds
typically ranged from 1 Gbps (Gigabit per second) to 10 Gbps. Many
organizations were transitioning to 10 Gbps backbones to
accommodate increasing data traffic and the demand for higher
bandwidth due to the proliferation of devices and applications.

e Data centers: Data center networks commonly employed backbone
speeds of 10 Gbps, 40 Gbps, and 100 Gbps. The adoption of 100 Gbps
was increasing, driven by the need to support high-density
virtualization, cloud services, and the rapid movement of data within
data center environments.

e ISP backbones: Internet Service Provider (ISP) backbone speeds
have evolved over time to meet the growing demand for high-speed
Internet access. Backbones were commonly operating at 100 Gbps, and
some larger ISPs were already exploring 400 Gbps and even 1 Terabit
per second (Tbps) speeds to handle the massive data traffic across
their networks.

e Research and education networks: Research and education networks
often had higher backbone speeds due to their focus on advanced data-

intensive applications. Speeds of 100 Gbps and beyond were not
uncommon in these environments.
Note: These speeds are not stagnant and continue to evolve as technology advances. The

deployment of faster networking technologies, such as 400 Gbps and 800 Gbps, is actual,
and even higher speeds may have become more prevalent since then.

Challenge of analyzing 800 Gbps networks

To consider, performing network traffic analysis on 800 Gbps networks
presents unique challenges due to the sheer volume of data involved. This
technology is already available nowadays, just look for it with an Internet
search engine.

Even using the fastest hardware and CPUs available nowadays, they would
be spending all their time dealing with the huge quantity of interrupts just
for handling packets if the Network Interface Cards (NICs) would not
provide offloading of a lot of TCP/IP functions on them.

So, to efficiently perform traffic analysis using DPI, you would need:

e High-speed capture hardware: To handle the high data rates, you
need specialized network capture hardware capable of capturing and
processing data at 800 Gbps. This hardware should have multiple high-
speed network interfaces and ample storage capacity to accommodate
the captured data.

e Traffic filtering: Given the volume of data, it is important to filter the
captured traffic to focus on specific areas of interest. Use filters to
capture only the relevant traffic, such as traffic to and from critical
servers, communication between specific IP ranges, or traffic using
specific protocols.

e Sampling: Due to the high speed, you might consider using sampling
techniques to capture a subset of the traffic for analysis. Sampling
involves capturing a fraction of the total traffic, which can help manage
the volume of data while still providing insights into network behavior.

e Advanced analysis tools: Deploy advanced network analysis tools that
can handle high-speed data rates and provide in-depth insights. These
tools should offer features like behavioral analysis, anomaly detection,
and the ability to generate meaningful reports.

e Parallel processing: Use multi-threading and parallel processing
techniques to distribute the analysis workload across multiple CPU
cores or machines. This can help improve analysis speed and
efficiency.

e Hybrid approach: Consider a hybrid approach that combines real-time
analysis with storage for historical analysis. Store captured data for
later analysis when specific incidents or anomalies need further
investigation.

e Bandwidth throttling: If capturing the entire network is not feasible,
consider using network devices to throttle or shape traffic to a
manageable level for analysis purposes.

Performing network traffic analysis on 800 Gbps networks requires a
combination of specialized hardware, high-performance analysis tools, and
careful planning to ensure that the analysis process is effective and efficient.
It is important to stay updated with advancements in network analysis
technology to address the challenges posed by high-speed networks.

But if we adopt a different approach like network flow analysis, things are
quite different. We do not need any more to analyze every single packet in
the thousands or million flows crossing the high-speed connection, but we
have a single flow to consider. It is true that we do not have the details of
the packet's payload, but there 1s an 80% possibility it would have been
encrypted, so it would not have been very useful to deal with anyway. And
instead of worrying about dealing with about a billion packets per second,
we can think about understanding if that single flow (in the middle of so
many flows) is meaningful for our business just by looking at the tuple of
{IP Source, IP Destination, IP Protocol, Source Port and Destination Port}.

The downside of network flow analysis is that the flow is emitted by the
crossing device when the communication is completed, so it is almost near
real-time. But in the end, it is not very different from an IPS that could
block a connection (even valid) only when it matches some well-known
pattern. Putting it simply, network flow analysis can scale much more than
passive DPI analysis. It can also build the foundation and rules for a better
network policy, being proactive, while DPI struggles with high-speed
connection links and is quite useless against encrypted traffic.

Conclusion

We introduced some of the already-known concepts, depending on your
skill, but it 1s better to have a good understanding of how things work in
combination with the kind of problems we both must solve and the ones we
will have to face. Network flow analysis is not yet well-known and
documented like DPI. It was not much used until recently, but we hope that
in this book, you will learn enough to take advantage of it.

In the next chapter, we are going to delve into flow protocol descriptions to
have a solid foundation and understanding of what we can do and what we
cannot with the provided information.

1. https://spectrum.ieee.org/does-repurposing-of-sun-microsystems-
slogan-honor-history

2. https://arkime.com/

3. https://www.mitre.org/our-impact/intellectual-property/chopshop
4. https://www.xplico.org

5. https://fl0wer.me

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://spectrum.ieee.org/does-repurposing-of-sun-microsystems-slogan-honor-history
https://arkime.com/
https://www.mitre.org/our-impact/intellectual-property/chopshop
https://www.xplico.org/
https://fl0wer.me/
https://discord.bpbonline.com/

CHAPTER 2

Fixed and Dynamic Length Flow
Protocols

Introduction

Let us start diving into the core of network flow analysis. In Chapter I,
Foundation of Network Flow Analysis, you have learned that packet-
inspection traffic analysis is like listening to a phone call, while network
flow traffic analysis is like checking the phone bill (you do not know the
content of the phone call, but you know both the parties, that is, the source
and destination IP address, involved in conversation, how long it lasted
(timestamp of begin and end of conversation), in which language they
talked about, that is, the IP protocol; the topics, mainly the destination
ports, and how meaningful the conversation was (bytes and packets). So,
flow data 1s the single entry in the phone bill.

The first thing we need to understand is how flow data is transmitted over
the network in a way that can be efficiently used for both general and
security purposes. We need to identify who are the actors in communication
and their scope. There are flow exporters, which are commonly operating
on network devices (but not only), and consumers of this kind of
information, which are widely called flow collectors. Normally, you
configure the flow exporters to send flow data to flow collectors and choose
(if possible) the network protocol to use.

A network protocol is a set of rules, conventions, and procedures that
govern how data is formatted, transmitted, received, and acknowledged
within a network. It defines the standards and guidelines for communication
between devices, ensuring that they can understand and exchange
information with each other efficiently and accurately. In the case of flow
protocols, they can be thought of as a sort of data streaming of information
from the flow exporter to the collector; it is a sort of unidirectional
conversation, usually happening over UDP protocol, although in rare cases,
Stream Control Transmission Protocol (SCTP) could be used.

Structure

In this chapter, we will discuss the following topics:
e Different kinds of network flow exporters
e Network flow collectors
e NetFlow version 1
e NetFlow version 5
e NetFlow version 9
e [PFIX
e sFlow v5
e Differences between fixed and dynamic flow protocols

Objectives

The chapter will discuss both the fixed length flow protocols, both dynamic
length flow protocols, their advantages and drawbacks. The chapter
describes in depth NetFlow v1, NetFlow v5, NetFlow v9, sFlow v5 and
IPFIX. By the end of this chapter, the user will have a good understanding
of the different protocols and protocols misuse.

Different kinds of network flow exporters

A network flow exporter is a device or software component that collects,
aggregates, and exports network flow data to a designated collector or
analyzer. Network flow data consists of summarized information about

communication patterns and traffic within a network, and it is crucial for
network monitoring, analysis, and security.

Here are the key aspects and functions of a network flow exporter:

Data collection: Gathers flow data by examining packets passing
through a network interface or interfaces. Flow data is typically
collected based on defined criteria, such as source and destination IP
addresses, ports, protocols, and timestamps.

Flow aggregation: Aggregates individual packets or observed flows
based on specific attributes (for example, IP addresses, ports) to create
summarized flow records. Aggregation helps reduce the volume of data
to be processed and transmitted.

Flow record generation: Generates flow records containing
information about each aggregated flow, such as source and destination
addresses, ports, byte and packet counts, and timestamps. These
records provide a concise representation of network activity.

Exporting flow records: Transmits the flow records to a designated
flow collector for further analysis. The export process may use
protocols such as NetFlow, IPFIX, sFlow, or others to transfer the flow
data from the exporter to the collector.

Protocol support: Supports specific flow export protocols, such as
NetFlow (v5, v9), IPFIX, sFlow, J-Flow (a variation of NetFlow v9,
specific to Juniper devices), and others, depending on the capabilities
and configuration of the exporter.

Configurable parameters: Allows configuration of parameters like
sampling rate (for sampled flow data), record format, export interval,
and destination collector(s) to suit the network monitoring
requirements.

Timestamping: Assigns accurate timestamps to each flow record to
provide insights into when the communication occurred, aiding in time-
sensitive analysis.

Flow sampling (optional): Optionally employs flow sampling
techniques to select a subset of flows for monitoring. Sampling helps
reduce resource overhead while providing a representative view of
network traffic.

o Efficient resource utilization: Ensures efficient usage of system
resources (CPU, memory, network bandwidth) to handle the collection,
aggregation, and export of flow data without impacting the overall
network performance.

Network flow exporters play a critical role in network monitoring and
analysis by providing valuable insights into traffic patterns, helping detect
anomalies, assessing network performance, and facilitating informed
decision-making regarding network management and security. Flow
collectors analyse the exported flow data to derive meaningful insights and
actionable intelligence for optimizing network operations.

Normally, Layer 2 devices like switches or virtual switches make use of
sFlow v5 protocol, while Layer 3 devices (like routers, firewalls, servers,
load balancers or virtualization platforms) make use of some NetFlow
variant or IPFIX protocol, depending on the system.

Although there are many variants and evolutions of the NetFlow protocols,
in this book we will focus on the v1, v5, v9, IPFIX and sFlow protocols.

Network flow collectors

Network flow collectors are specialized devices or software applications
responsible for gathering, storing, and analyzing network flow data
generated by flow exporters. They play a vital role in network monitoring
and management, providing valuable insights into network traffic, usage
patterns, and security events. Here are the key aspects and functions of
network flow collectors:

e Data reception: Receive and accumulate network flow data
transmitted by flow exporters across the network. Flow data is sent
using specific flow export protocols such as NetFlow, IPFIX, sFlow, J-
Flow, etc.

e Flow data storage: Store the received flow data in a structured and
organized manner, often using databases or specialized storage systems
optimized for efficient data storage and retrieval.

o Data aggregation and correlation: Aggregate and correlate flow data
to create summaries or reports that provide an overview of network
traffic patterns, usage trends, and behaviour. Aggregated data aids in

identifying anomalies and detecting potential security threats.

e Data analysis and visualization: Can analyze the flow data to derive
meaningful insights, generate reports, and visualize network traffic
trends. Data can be presented in various graphical formats, dashboards,
or tables for easy interpretation.

e Anomaly detection and alerting: Can utilize algorithms and heuristics
to detect anomalies or unusual patterns in network traffic that may
indicate potential security incidents or abnormal behaviour. Alerts and
notifications are often generated for further investigation.

e Historical data retention: Retain historical flow data for a specified
duration to support trend analysis, historical comparisons, and forensic
investigations into past network activities.

e Integration with other systems: Integrate with other network
management and security systems to enhance overall network visibility
and provide a comprehensive view of the network environment.

e Security analysis: Assist in security analysis by identifying suspicious
network behavior, potential DDoS attacks, malware infections, and
other security-related events based on flow data patterns.

e Capacity planning: Can aid in network capacity planning by
analyzing trends and traffic patterns to forecast future network
requirements and optimize network resources.

e Compliance and reporting: Can generate compliance reports based on
regulatory requirements or organizational policies. Provide audit trails
and evidence of network activity for compliance purposes.

e Customization and configuration: Allow customization of reports,
dashboards, and analysis parameters to suit specific organizational
requirements and preferences.

Network flow collectors are a critical component of network monitoring
and analysis infrastructure. They help organizations maintain optimal
network performance, improve security posture, and make informed
decisions to ensure efficient network operations.

NetFlow version 1

NetFlow version 1 (NetFlow v1) was the initial implementation of the
protocol, and it laid the foundation for subsequent versions with more
features and improvements. NetFlow v1 is the first iteration of the NetFlow
protocol, focusing on exporting basic flow information for network
analysis. While it laid the groundwork for subsequent versions, it has
limitations in terms of features and scalability. Organizations looking for
more advanced capabilities typically use newer versions of the protocol.
Here is a detailed description of the NetFlow v1 protocol:

e NetFlow v1 protocol overview: NetFlow vl is a lightweight protocol
designed to export network traffic information from network devices,
such as routers and switches, to a collector for analysis. It focuses on
sending information about individual packets or flows as they traverse
the device.

e Key concepts:

o Flow: A flow represents a unidirectional sequence of packets
between a specific source IP address and a specific destination IP
address. Flows are defined by their network-layer attributes and can
include fields such as source IP, destination IP, source port,
destination port, protocol, and so on.

o NetFlow exporter: This network device (for example, router or
switch) generates and sends NetFlow records to a collector. The
exporter identifies and aggregates flow data to be exported.

o NetFlow collector: This is the server that receives NetFlow records
from one or more exporters. It stores and analyzes the data to
provide insights into network traffic patterns.

o NetFlow record: A NetFlow record is a data structure that contains
information about a flow. It includes fields such as source IP,
destination IP, source port, destination port, protocol, bytes sent,
packets sent, and so on.

e NetFlow vl packet structure: A NetFlow vl packet consists of a
header followed by a sequence of flow records.

o Header:

» Version number: 1 (indicating NetFlow v1).

(¢]

= Count: Number of flow records in the packet.

Flow record format: Each flow record contains the following

fields:

= Source IP address: The source IP address of the flow.

= Destination IP address: The destination IP address of the flow.

= [P protocol: The IP protocol number (for example, TCP = 6,
UDP = 17).

» Source port: The source port of the flow (0 if not applicable).

» Destination port: The destination port of the flow (0 if not
applicable).

» Packet count: Number of packets in the flow.

= Byte count: Total number of bytes in the flow.

» First switched: Timestamp when the first packet of the flow
was observed.

» Last switched: Timestamp when the last packet of the flow was
observed.

e NetFlow vl protocol operation:

(¢]

Flow identification: The NetFlow exporter monitors incoming
packets and identifies unique flows based on their attributes.

Flow aggregation: The exporter aggregates data for each identified
flow, maintaining counters for packets and bytes sent.

Flow timeout: When a flow is no longer active (no packets seen for
that flow within the scheduled timeout, which usually is around
30/60 seconds), it is considered inactive. The exporter maintains a
timeout mechanism to clear inactive flows from its cache.

Record generation: Once a flow becomes inactive or when a
NetFlow export timer expires, the exporter generates NetFlow
records for the flow.

Record export: The exporter encapsulates NetFlow records into
NetFlow v1 packets and sends them to the collector using UDP.

Collection and analysis: The collector receives the NetFlow

packets, extracts the records, and processes the data for analysis,
reporting, and monitoring purposes.

Limitations of NetFlow v1

NetFlow v1 lacks some of the advanced features found in later versions,
such as flow sampling, support for [Pv6, and additional flow attributes. It
also has limitations in terms of scalability and extensibility compared to
later NetFlow versions like NetFlow v5, v9, and Internet Protocol Flow
Information Export (IPFIX).

Here we can see a Wireshark dissected NetFlow V1 protocol packet. In this
example, a Mikrotik RB2011 (Firmware 7.11.2) with IP address
10.1.30.101 was configured to send packets to collector on 10.1.30.210 on
port 2056 (which Wireshark labels as service omnisky). It is a 394 bytes
UDP packet containing 7 Protocol Data Units (PDUS, in our case, flows).
Refer to the following:

No. VLAN Time Source
Destination Protocol DST Port Length Info
1 0.000000 10.1.30.101
10.1.30.210 CFLOW omnisky 394 total: 7
(vl) flows

Frame 1: 394 bytes on wire (3152 bits), 394 bytes
captured (3152 bits)

Ethernet II, Src: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7), Dst: HewlettP_15:9c:45
(2¢c:27:d7:15:9c:45)

Internet Protocol Version 4, Src: 10.1.30.101, Dst:
10.1.30.210

User Datagram Protocol, Src Port: omnisky (2056), Dst
Port: omnisky (2056)

Cisco NetFlow/IPFIX
Version: 1
Count: 7
SysUptime: 59155.920000000 seconds
Timestamp: Oct 15, 2023 15:22:19.861512015 CEST

pdu 1/7
SrcAddr: 10.1.30.101
DstAddr: 10.1.30.210
NextHop: ©0.0.0.0
InputInt: 11
OutputInt: 11
Packets: 3
Octets: 564
[Duration: 13.520000000 seconds]
SrcPort: 2056
DstPort: 2056
Padding: 0000
Protocol: UDP (17)
IP ToS: 0x00
TCP Flags: 0Ox00
Padding: 00001e
Reserved: 00000000
pdu 2/7
SrcAddr: 10.1.30.210
DstAddr: 10.1.30.101
NextHop: ©0.0.0.0
InputInt: 11
OutputInt: ©
Packets: 3
Octets: 648
[Duration: 13.520000000 seconds]
SrcPort: ©
DstPort: o
Padding: 0000
Protocol: ICMP (1)
IP ToS: ©xco
TCP Flags: 0x00
Padding: 000021

pdu

pdu

Reserved: 00000000
3/7

SrcAddr: 10.1.50.100
DstAddr: 10.1.30.101
NextHop: ©0.0.0.0
InputInt: 11
OutputInt: ©
Packets: 3

Octets: 648
[Duration: 13.520000000 seconds]
SrcPort: ©

DstPort: o

Padding: 0000
Protocol: ICMP (1)
IP ToS: Oxco

TCP Flags: 0x00
Padding: 000000
Reserved: 00000000
4/7

SrcAddr: 10.1.20.201
DstAddr: 10.1.30.101
NextHop: ©0.0.0.0
InputInt: 11
OutputInt: ©
Packets: 3

Octets: 648
[Duration: 13.520000000 seconds]
SrcPort: 0

DstPort: ©

Padding: 0000
Protocol: ICMP (1)
IP ToS: OxcO

TCP Flags: 0x00

pdu

pdu

Padding: 006dd8
Reserved: 00000000
5/7

SrcAddr: 10.1.20.200
DstAddr: 10.1.30.101
NextHop: ©0.0.0.0
InputInt: 11
OutputInt: ©
Packets: 3

Octets: 648
[Duration: 13.520000000 seconds]
SrcPort: 0

DstPort: o

Padding: 0000
Protocol: ICMP (1)
IP ToS: Oxc@O

TCP Flags: 0x00
Padding: 000000
Reserved: 00000000
6/7

SrcAddr: 10.1.20.202
DstAddr: 10.1.30.101
NextHop: 0.0.0.0
InputInt: 11
OutputInt: ©
Packets: 3

Octets: 648
[Duration: 13.520000000 seconds]
SrcPort: ©

DstPort: ©

Padding: 0000
Protocol: ICMP (1)
IP ToS: Oxco

TCP Flags: 0x00

Padding: 000000

Reserved: 00000000
pdu 7/7

SrcAddr: 10.1.20.203

DstAddr: 10.1.30.101

NextHop: 0.0.0.0

InputInt: 11

OutputInt: ©

Packets: 3

Octets: 648

[Duration: 13.520000000 seconds]

SrcPort: ©

DstPort: ©

Padding: 0000

Protocol: ICMP (1)

IP ToS: Oxco

TCP Flags: 0x00

Padding: 000000

Reserved: 00000000

NetFlow version 5

NetFlow version 5 (NetFlow v5) is an enhanced version of the NetFlow v1
protocol, developed by Cisco, that provides more detailed information
about network flows compared to the original NetFlow v1. Building on v1’s
simplicity, v5 introduced support for Border Gateway Protocol information
and flow sequence numbers. It is widely used for network monitoring,
security analysis, and traffic analysis. Here is a comprehensive description
of the NetFlow v5 protocol:

e NetFlow v5 protocol overview: NetFlow v5 builds upon the
foundation of NetFlow vl by introducing additional attributes and
features to provide a richer view of network traffic flows. It captures
and exports data on individual flows traversing network devices for

analysis by network administrators and security professionals.
e Key concepts:

o Flow: Similar to NetFlow v1, a flow in NetFlow v5 represents a
unidirectional sequence of packets between a specific source [P
address and a specific destination I[P address. Flows are
characterized by their network-layer attributes, including source
and destination IP, source and destination port, and protocol.

o NetFlow exporter: The network device (router, switch, and so on)
generating and transmitting NetFlow records to a collector. The
exporter identifies, aggregates, and exports flow data.

o NetFlow collector: The server that receives NetFlow records from
one or more exporters. It stores, processes, and analyzes the data to
offer insights into network traffic behavior.

o NetFlow record: A data structure representing a flow. It contains
attributes such as source IP, destination IP, source port, destination
port, protocol, packet and byte counts, and additional information.

* NetFlow v5 packet structure: A NetFlow v5 packet comprises a
header followed by a sequence of flow records.

o Header:

= Version Number: 5 (indicating NetFlow v5).
= Count: Number of flow records in the packet.

= System uptime: Time in milliseconds since the device was
booted.

» UNIX timestamp: Seconds since the UNIX epoch (usually
January 1, 1970) when the packet was sent.

» Sequence number: A monotonically increasing value used for
packet ordering.

= Source ID: A field used to differentiate between multiple
exporters when packets are sent to a single collector.

o Flow record format: Each flow record contains attributes similar
to NetFlow v1 and introduces a few new attributes:

» Source IP address

» Destination I[P address

= Source port

» Destination port

= [P protocol

= Type of Service (ToS)

» [P Next Hop (the IP address of the next hop router in the path)
= Source Autonomous System (AS) number

» Destination AS number

» [nput interface (incoming interface on the exporting device)
= QOutput interface (outgoing interface on the exporting device)
» Packet count

= Byte count

» First switched

= [ast switched

= TCP flags

= Router and source mask

e NetFlow VS5 operation:

o

Flow identification: Similar to NetFlow v1, the NetFlow exporter
monitors incoming packets to identify distinct flows based on their
attributes.

Flow aggregation: Flow data is aggregated, and counters for
packets and bytes are updated for each flow.

Flow timeout: When a flow becomes inactive (no packets seen), it
is marked as inactive and eventually removed from the exporter's
cache.

Record generation: Inactive flows or when the export timer
triggers, NetFlow records are generated for each flow.

Record export: NetFlow records are encapsulated into NetFlow v5
packets and transmitted to the collector using UDP.

Collection and analysis: The collector receives NetFlow packets,

extracts records, processes the data, and generates reports for
network analysis, monitoring, and security purposes.

Advantages of NetFlow v5

NetFlow v5 offers more attributes and information compared to vl,
allowing for a deeper understanding of network traffic patterns, application
usage, and potential security threats. It strikes a balance between feature
richness and simplicity, making it a popular choice for network
administrators. It is still very widely used, performs very well but it lacks
support for extended attributes and IPv6 protocol.

Here we can see a Wireshark dissected NetFlow V35 protocol packet. In this
example, a Mikrotik RB2011 (Firmware 7.11.2) with IP address
10.1.30.101 was configured to send packets to collector on 10.1.30.210 on
port 2056 (which Wireshark labels as service omnisky). It is a 114 bytes
UDP packet containing 1 PDU (flows). Refer to the following:

No. VLAN Time Source
Destination Protocol DST Port Length Info
1 0.000000 10.1.30.101
10.1.30.210 CFLOW omnisky 114 total: 1
(v5) flow

Frame 1: 114 bytes on wire (912 bits), 114 bytes
captured (912 bits)

Encapsulation type: Ethernet (1)

Arrival Time: Oct 15, 2023 21:26:33.385431000 CEST
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1697397993.385431000 seconds

[Time delta from previous captured frame:
0.000000000 seconds]

[Time delta from previous displayed frame:
0.000000000 seconds]

[Time since reference or first frame: 0.000000000
seconds]

Frame Number: 1
Frame Length: 114 bytes (912 bits)

Capture Length: 114 bytes (912 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:udp:cflow]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]

Ethernet II, Src: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7), Dst: HewlettP_15:9c:45
(2¢c:27:d7:15:9c:45)

Destination: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Destination (resolved): HewlettP_15:9c:45]
[Destination OUI: 2c:27:d7 (Hewlett Packard)]
[Destination OUI (resolved): Hewlett Packard]
Address: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Address (resolved): HewlettP_15:9c:45]
[Address OUI: 2c:27:d7 (Hewlett Packard)]
[Address OUI (resolved): Hewlett Packard]

ceee 0000 tiie teee eese see. = LG bit:
Globally unique address (factory default)
ceee ¢000 tiie teee eeee eee. = LG bit:
Globally unique address (factory default)
ceee o040 ciee teee eeee oee.. = IG bit:
Individual address (unicast)
ee@ it teee ceee oe.. = IG bit:

Individual address (unicast)

Source: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Source (resolved): Routerbo_d8:3f:d7]
[Source OUI: d4:ca:6d (Routerboard.com)]
[Source OUI (resolved): Routerboard.com]
Address: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Address (resolved): Routerbo _d8:3f:d7]
[Address OUI: d4:ca:6d (Routerboard.com)]
[Address OUI (resolved): Routerboard.com]

.0. . +... = LG bit:
Globally un1que address (factory default)

.0. « +... = LG bit:
Globally un1que address (factory default)
ceee 0000 ciee teee eeee oee.. = IG bit:
Individual address (unicast)
ee@ tiit teee eeee se.. = IG bit:

Individual address (unicast)
Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 10.1.30.101, Dst:
10.1.30.210
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CSO,
ECN: Not-ECT)
0000 00. .
Default (0)

Differentiated Services Codepoint:

..00 = Explicit Congestion Notification:
Not ECN- Capable Transport (0)

Total Length: 100
Identification: Oxbf76 (49014)
Flags: 0x0000
%
@i tiie teee sees
ce@. tiie teee ceen
Fragment offset: ©
Time to live: 255
Protocol: UDP (17)
Header checksum: ©xaad9 [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.30.101
Source or Destination Address: 10.1.30.101
[Source Host: 10.1.30.101]

Reserved bit: Not set
Don't fragment: Not set
More fragments: Not set

[Source or Destination Host: 10.1.30.101]
Destination: 10.1.30.210

Source or Destination Address: 10.1.30.210
[Destination Host: 10.1.30.210]

[Source or Destination Host: 10.1.30.210]

User Datagram Protocol, Src Port: omnisky (2056), Dst
Port: omnisky (2056)

Source Port: omnisky (2056)
Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Length: 80
[Checksum: [missing]]
[Checksum Status: Not present]
[Stream index: 0]
[Timestamps]
[Time since first frame: 0.000000000 seconds]

[Time since previous frame: ©0.000000000
seconds]

Cisco NetFlow/IPFIX
Version: 5
Count: 1
SysUptime: 81009.440000000 seconds
Timestamp: Oct 15, 2023 21:26:33.381530544 CEST
CurrentSecs: 1697397993
CurrentNSecs: 381530544
FlowSequence: 13
EngineType: RP (0)
Engineld: ©
00.. ¢veee o... = SamplingMode: No sampling
mode configured (0)
. .00 0000 0000 00O = SampleRate: ©
pdu 1/1

SrcAddr: 10.1.61.2

DstAddr: 255.255.255.255

NextHop: 0.0.0.0

InputInt: 218

OutputInt: ©

Packets: 1

Octets: 190

[Duration: ©.000000000 seconds]
StartTime: 80993.160000000 seconds
EndTime: 80993.160000000 seconds

SrcPort: 5678

DstPort: 5678

Padding: 00

TCP Flags: 0x00

Protocol: UDP (17)

IP ToS: ©x00

SrcAS: ©

DstAS: ©

SrcMask: @ (prefix: 0.0.0.0/32)

DstMask: @ (prefix: 0.0.0.0/32)

Padding: 0000

NetFlow version 9

NetFlow version 9 (NetFlow v9) is an advanced version of the NetFlow
protocol developed by Cisco. It significantly enhances the flexibility,
extensibility, and capabilities of flow data export compared to earlier
versions. NetFlow v9 allows for the export of customizable flow templates,
enabling the collection of various types of flow data. Instead of using a
fixed format with fixed fields, NetFlow v9 describes the information that
will be exchanged in the so called template packets. The template packet
contains a list of information fields that will be sent to the collector, that
needs it for proper decoding of the flow traffic. Templates are dynamic and
can change during the export process of information. NetFlow v9 represents

a significant evolution over its predecessors, NetFlow vl and v5. It
introduces a template-based mechanism that offers greater flexibility in
exporting flow data attributes, allowing for the capture of diverse
information about network traffic flows. NetFlow v9 is often used in more
complex network environments where the need for customizable flow data
is high. Here is a comprehensive description of the NetFlow v9 protocol:

e Key concepts:

(¢]

Flow: Similar to earlier NetFlow versions, a flow in NetFlow v9
represents a unidirectional sequence of packets between a specific
source and destination. Flows are defined by their attributes,
including source and destination IP, ports, protocol, and additional
details.

NetFlow exporter: The network device generating and exporting
NetFlow v9 records to a collector. The exporter defines and exports
flow templates to convey the structure of the data.

NetFlow collector: The server that receives NetFlow v9 records
from exporters. It processes the data according to the templates and
provides insights into network behavior.

NetFlow record: The data structure representing a flow, similar to
previous versions, with the added flexibility of customizable
attributes.

Flow template: A key feature of NetFlow v9, flow templates

define the structure of exported data. They specify which attributes
are included in the flow records.

e NetFlow v9 packet structure: NetFlow v9 packets consist of a header,
flow templates, and flow data records.

(¢]

Header:

= Version number: 9 (indicating NetFlow v9).

= Count: Number of flow data records and template records in the
packet.

= System uptime: Time in milliseconds since the device was
booted.

» UNIX timestamp: Seconds since the UNIX epoch when the

o

packet was sent.

» Sequence number: An increasing value used for packet
sequencing.

» Source ID: A field to differentiate exporters in cases of multiple
exporters sending data to a single collector.

Flow template format: Flow templates are used to describe the
attributes included in flow data records. They include:

» Template ID: An identifier for the template.

» Field count: The number of fields included in the template.

= Scope count: The number of fields that are part of the template's
scope.

» Field type and length: For each field, the type of attribute and
its length.

e Flow data record format: Flow data records follow the structure
defined by the templates and include attributes specified in the
templates. These attributes include source IP, destination IP, ports,
protocol, packet and byte counts, and more.

e NetFlow operation:

o

Flow template definition: The exporter defines and sends flow
templates to the collector. These templates specify the attributes to
be included in flow data records.

Flow identification and aggregation: Similar to earlier versions,
the exporter monitors incoming packets, aggregates flow data, and
updates counters.

Flow timeout and record generation: Inactive flows or when the
export timer triggers, the exporter generates flow data records using
the templates.

Record export: Flow data records are encapsulated into NetFlow
v9 packets and transmitted to the collector via UDP.

Template management: The collector maintains a template cache
and uses received templates to parse and interpret flow data

records.

o Collection and analysis: The collector extracts and processes flow
data records based on templates, enabling in-depth network
analysis, monitoring, and security.

Advantages of NetFlow v9

NetFlow v9 offers unparalleled flexibility through template-based export.
This enables the collection of customized flow data attributes, making it
suitable for complex network environments, cloud environments, and
applications requiring specific flow attributes. It is a still very widely used
protocol and it finally provides support for IPv6 and extended attributes.
Although being a proprietary protocol, it became an industry standard like
its fixed version NetFlow V5 and Cisco wrote several Request for
Comments (RFC) related to NetFlow Version 9 (NetFlow v9) protocol,
literally building the foundation for the IETF standard IPFIX (which is also
ironically called NetFlow v10). Here are some key RFCs related to
NetFlow v9:

 RFC 3954:
o Title: Cisco Systems NetFlow Services Export Version 9
o URL: RFC 3954 (https://datatracker.ietf.org/doc/html/rfc3954)

o Note: This RFC specifies the NetFlow v9 protocol and defines the
structure of NetFlow v9 records.

e RFC 3955:

o Title: Evaluation of Candidate Protocols for IPFIX
o URL: RFC 3955 (https://datatracker.ietf.org/doc/html/rfc3955)
o Note: This RFC compares and evaluates flow export protocols,
including NetFlow v9.
e RFC 5470:

o Title: Architecture for IP Flow Information Export
o URL: RFC 5470 (https://datatracker.ietf.org/doc/html/rfc5470)

o Note: This RFC provides an architecture for IPFIX, which is
related to NetFlow v9.

e RFC 5471:

o Title: Guidelines for IPFIX Testing
o URL: RFC 5471 (https://datatracker.ietf.org/doc/html/rfc5471)

o Note: This RFC provides guidelines for testing IPFIX
implementations, which includes NetFlow v9.

e RFC 6313:

o Title: Export of Structured Data in [IPFIX
o URL: RFC 6313 (https://datatracker.ietf.org/doc/html/rfc6313)

o Note: This RFC covers exporting structured data within IPFIX, a
framework related to NetFlow v9.

These RFCs define the standards, architecture, evaluation, and export
mechanisms related to NetFlow v9. They are important references for
understanding the protocol and implementing NetFlow v9 in network
monitoring and analysis systems.

Here we can see a couple of Wireshark dissected NetFlow V9 protocol
packet. In this example, a Mikrotik RB2011 (Firmware 7.11.2) with IP
Address 10.1.30.101 was configured to send packets to the collector on
10.1.30.210 on port 2056 (which Wireshark labels as service omnisky). The
first packet contains real data and the second packet contains the templates
to decode data. Normally, the network flow exporter sends first the
templates and then the data. Templates are normally exported periodically
and could have their dedicated packets or can be mixed with data packets;
normally, it is up to the vendor implementation. Refer to the following:

No. VLAN Time Source
Destination Protocol DST Port Length Info
1 0.000000 190.1.30.101
10.1.30.210 CFLOW omnisky 842 total: 9
(v9) records Obs-Domain-ID= @ [Data:256]

Frame 1: 842 bytes on wire (6736 bits), 842 bytes
captured (6736 bits)

Encapsulation type: Ethernet (1)
Arrival Time: Oct 18, 2023 22:45:22.582126000 CEST

[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1697661922.582126000 seconds

[Time delta from previous captured frame:
0.000000000 seconds]

[Time delta from previous displayed frame:
0.000000000 seconds]

[Time since reference or first frame: 0.000000000
seconds]

Frame Number: 1

Frame Length: 842 bytes (6736 bits)

Capture Length: 842 bytes (6736 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:udp:cflow]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]

Ethernet II, Src: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7), Dst: HewlettP_15:9c:45
(2c:27:d7:15:9c:45)
Destination: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Destination (resolved): HewlettP_15:9c:45]
[Destination OUI: 2c:27:d7 (Hewlett Packard)]
[Destination OUI (resolved): Hewlett Packard]
Address: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Address (resolved): HewlettP_15:9c:45]
[Address OUI: 2c:27:d7 (Hewlett Packard)]
[Address OUI (resolved): Hewlett Packard]
ceee 0000 tiie tiee weee se.. = LG bit:
Globally unique address (factory default)

ceee 2400 tiie teee cees oe.. = LG bit:
Globally unique address (factory default)

ceee 0040 ciie teee eeee oe.. = IG bit:
Individual address (unicast)

ceee 0040 ciie teee eeee oee.. = IG bit:
Individual address (unicast)

Source: Routerbo d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Source (resolved): Routerbo_d8:3f:d7]
[Source OUI: d4:ca:6d (Routerboard.com)]
[Source OUI (resolved): Routerboard.com]
Address: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Address (resolved): Routerbo d8:3f:d7]
[Address OUI: d4:ca:6d (Routerboard.com)]
[Address OUI (resolved): Routerboard.com]

. .0. . .« «... = LG bit:
Globally un1que address (factory default)
.0. .« «... = LG bit:
Globally un1que address (factory default)
ceee 20e@ tiie teee cees oo.. = IG bit:
Individual address (unicast)
e it teee teee oe.. = IG bit:

Individual address (unicast)
Type: IPv4 (0x0800)

Internet Protocol Version 4, Src: 10.1.30.101, Dst:
10.1.30.210

0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CSO,
ECN: Not-ECT)
0000 00. .
Default (0)

Differentiated Services Codepoint:

..00 = Explicit Congestion Notification:
Not ECN- Capable Transport (0)

Total Length: 828

Identification: Oxce43 (52803)

Flags: 0x0000
O.cv ¢eve esee +... = Reserved bit: Not set
@.. viev tees ooe. = Don't fragment: Not set

ee@. tiitv teee sese. = More fragments: Not set

Fragment offset: ©

Time to live: 255

Protocol: UDP (17)

Header checksum: 0x9934 [validation disabled]

[Header checksum status: Unverified]

Source: 10.1.30.101

Source or Destination Address: 10.1.30.101

[Source Host: 10.1.30.101]

[Source or Destination Host: 10.1.30.101]

Destination: 10.1.30.210

Source or Destination Address: 10.1.30.210

[Destination Host: 10.1.30.210]

[Source or Destination Host: 10.1.30.210]
Here begins the NetFlow v9 data describing the different flows. Notice that
in order to decode a NetFlow v9 data packet, you first need to receive the
NetFlow v9 Template describing how to interpret the data in the packet. As
you can see, the data packet contains the FlowSet ID 256, which is the
number of the template 1D, and the packet will be decoded according to its
contents. The so-called template packets can arrive in any order, sometimes
they are even embedded in different FlowSets inside the same packet,
sometimes before the data, or sometimes after, depending on when the
NetFlow data collection started on the device.

User Datagram Protocol, Src Port: omnisky (2056), Dst
Port: omnisky (2056)

Source Port: omnisky (2056)

Destination Port: omnisky (2056)

Source or Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Length: 808

[Checksum: [missing]]

[Checksum Status: Not present]

[Stream index: 0]

[Timestamps]
[Time since first frame: 0.000000000 seconds]

[Time since previous frame: 0.000000000
seconds]

Cisco NetFlow/IPFIX

Version: 9

Count: 9

SysUptime: 344938.640000000 seconds

Timestamp: Oct 18, 2023 22:45:22.000000000 CEST
CurrentSecs: 1697661922

FlowSequence: 17

Sourceld: ©

FlowSet 1 [id=256] (9 flows)
FlowSet Id: (Data) (256)
FlowSet Length: 780

[Template Frame: 125 (received after this
frame)]

Flow 1

[Duration: 71.760000000 seconds (switched)]
StartTime: 344850.240000000 seconds
EndTime: 344922.000000000 seconds

Packets: 20

Octets: 7596

InputInt: 11

OutputInt: 11

SrcAddr: 10.1.30.101

DstAddr: 10.1.30.210

Protocol: UDP (17)

IP ToS: Ox00

SrcPort: 2056 (omnisky)

DstPort: 2056 (omnisky)

NextHop: ©0.0.0.0

DstMask: ©

SrcMask: ©
TCP Flags: 0Ox00

P0.. = Reserved: 0x0
..0. = URG: Not used
..® = ACK: Not used

. ©... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
Sampling interval: ©
Sampling algorithm: Deterministic sampling
(1)
Destination Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)
Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Post Destination Mac Address:
00:00:00 00:00:00 (00:00:00:00:00:00)
Post Source Mac Address: Routerbo d8:3f:d7
(d4:ca:6d:d8:3f:d7)
As you can see in the following FlowSet, it describes a flow that is subject
to a Network Address Translation (NAT), thus making use of the
advanced flexibility of the NetFlow v9 protocol.
Post NAT Source IPv4 Address: 10.1.30.101
Post NAT Destination IPv4 Address:
10.1.30.210
Post NAPT Source Transport Port: 2056
Post NAPT Destination Transport Port: 2056
Flow 2
[Duration: 17.680000000 seconds (switched)]
StartTime: 344904.320000000 seconds
EndTime: 344922.000000000 seconds
Packets: 6

Octets: 2060
InputInt: 11
OutputInt: ©
SrcAddr: 10.1.30.210
DstAddr: 10.1.30.101
Protocol: ICMP (1)
IP ToS: Oxco
SrcPort: ©

DstPort: ©

NextHop: ©0.0.0.0
DstMask: ©

SrcMask: ©

TCP Flags: Ox00

00.. = Reserved: 0x0
0. = URG: Not used
ce® = ACK: Not used

. @... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
As you can see, the NetFlow v9 also supports sampling, and it can even
provide the way the sampling was applied.
Sampling interval: ©
Sampling algorithm: Deterministic sampling
(1)
Destination Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Post Destination Mac Address:
HewlettP_15:9c:45 (2c:27:d7:15:9c:45)

Post Source Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)

Post NAT Source IPv4 Address:
Post NAT Destination IPv4 Address:

10.1.30.101

10.1.30.210

Post NAPT Source Transport Port: ©
Post NAPT Destination Transport Port: ©

Flow 3

[Duration: 71.760000000 seconds (switched)]

StartTime:

344850.240000000 seconds

EndTime: 344922.000000000 seconds

Packets: 20
Octets: 6260
InputInt: 11
OutputInt: ©

SrcAddr: 10.1.50.100
DstAddr: 10.1.30.101

Protocol: ICMP (1)

IP ToS: Oxco
SrcPort: ©
DstPort: ©

NextHop: ©0.0.0.0

DstMask: ©

SrcMask: ©

TCP Flags: 0x00
00.. =

Reserved:
URG:
ACK:
PSH:
RST:
SYN:
FIN:
Sampling interval: ©

Not
Not
Not
Not
Not
Not

ox0
used
used
used
used
used
used

Sampling algorithm: Deterministic sampling

(1)

Destination Mac Address: Routerbo _d8:3f:d7
(d4:ca:6d:d8:3f:d7)

Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)

Post Destination Mac Address:
a2:55:f5:b3:27:ba (a2:55:f5:b3:27:ba)

Post Source Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)

Post NAT Source IPv4 Address: 10.1.50.100

Post NAT Destination IPv4 Address:
10.1.30.101

Post NAPT Source Transport Port: ©

Post NAPT Destination Transport Port: ©

Flow 4
[Duration: 71.760000000 seconds (switched)]
StartTime: 344850.240000000 seconds
EndTime: 344922.000000000 seconds

Packets: 20

Octets: 6260
In previous versions of NetFlow, the input interface and output interface are
provided. Their numbering is normally related to the SNMP view of the
device, so InputInt 11 does not mean like the example, GigabitEthernet
0/11 but it is the interface number 11 reported by the SNMP agent of the
system.

InputInt: 11

OutputInt: ©

SrcAddr: 10.1.20.201

DstAddr: 10.1.30.101

Protocol: ICMP (1)

IP ToS: OxcO

SrcPort: O

DstPort: 0

NextHop: ©0.0.0.0
DstMask: ©
SrcMask: ©
TCP Flags: Ox00

00.. = Reserved:
..0. = URG: Not
..® = ACK: Not
. ©... = PSH: Not
.0.. = RST: Not

..0. = SYN: Not

..® = FIN: Not

Sampling interval: ©
Sampling algorithm: Deterministic sampling

(1)

Destination Mac Address: Routerbo _d8:3f:d7

(d4:ca:6d:d8:3f:d7)

Source Mac Address: Routerbo _d8:3f:d7

(d4:ca:6d:d8:3f:d7)

o0x0
used
used
used
used
used
used

Post Destination Mac Address:

a2:55:f5:b3:27:ba (a2:55:f5:b3:27:ba)
Post Source Mac Address: 00:00:00_00:00:00

(00:00:00:00:00:00)

Post NAT Source IPv4 Address:

10.1.30.101

Post NAPT Source Transport Port: ©
Post NAPT Destination Transport Port: ©

Flow 5

[Duration: 71.760000000 seconds (switched)]

As strange as it can seem, the reported start time and stop time of the flow
are not reported as absolute times but in terms of clock ticks of the router
beginning from the standard Unix epoch (1/1/1970), and the calculation
needed to understand it changes between the different versions of NetFlow

and IPFIX.

10.1.20.201
Post NAT Destination IPv4 Address:

StartTime: 344850.240000000 seconds

EndTime: 344922.000000000 seconds
Packets: 20

Octets: 6260
InputInt: 11
OutputInt: ©
SrcAddr: 10.1.20.200
DstAddr: 10.1.30.101
Protocol: ICMP (1)
IP ToS: Oxco
SrcPort: ©
DstPort: 0
NextHop: ©0.0.0.0
DstMask: ©
SrcMask: ©
TCP Flags: 0Ox00
00.. = Reserved: Ox0
..0. = URG: Not used
..0 = ACK: Not used
. ©... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
Sampling interval: ©
Sampling algorithm: Deterministic sampling
(1)
Destination Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Post Destination Mac Address:
a2:55:f5:b3:27:ba (a2:55:f5:b3:27:ba)
Post Source Mac Address: 00:00:00_00:00:00

(00:00:00:00:00:00)
Post NAT Source IPv4 Address: 10.1.20.200

Post NAT Destination IPv4 Address:
10.1.30.101

Post NAPT Source Transport Port: ©
Post NAPT Destination Transport Port: ©
Flow 6
[Duration: 71.760000000 seconds (switched)]
StartTime: 344850.240000000 seconds
EndTime: 344922.000000000 seconds
Packets: 20
Octets: 6260
InputInt: 11
OutputInt: ©
SrcAddr: 10.1.20.202
DstAddr: 10.1.30.101
Protocol: ICMP (1)
IP ToS: Oxco
SrcPort: ©
DstPort: ©
NextHop: ©0.0.0.0
DstMask: ©
SrcMask: ©
In our example, most flows are ICMP ones, so the following field is not

used, but in the case of a TCP protocol flow, this reports the fields seen
during the flow.

TCP Flags: 0Ox00

P0.. = Reserved: 0x0
..0. = URG: Not used
..® = ACK: Not used

. O... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used

..0 = FIN: Not used

Sampling interval: ©

Sampling algorithm: Deterministic sampling
(1)

Destination Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)

Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)

Post Destination Mac Address:
a2:55:f5:b3:27:ba (a2:55:f5:b3:27:ba)

Post Source Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)

Post NAT Source IPv4 Address: 10.1.20.202

Post NAT Destination IPv4 Address:
10.1.30.101

Post NAPT Source Transport Port: ©

Post NAPT Destination Transport Port: ©

Flow 7
[Duration: 71.760000000 seconds (switched)]
StartTime: 344850.240000000 seconds
EndTime: 344922.000000000 seconds

Packets: 20

Octets: 6260

InputInt: 11

OutputInt: ©

SrcAddr: 10.1.20.203

DstAddr: 10.1.30.101

Protocol: ICMP (1)

IP ToS: Oxc@O

SrcPort: O

DstPort: O

NextHop: ©0.0.0.0

DstMask: ©

SrcMask: ©
TCP Flags: 0Ox00

P0.. = Reserved: 0x0
..0. = URG: Not used
..® = ACK: Not used

. ©... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
Sampling interval: ©
Sampling algorithm: Deterministic sampling
(1)
Destination Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Post Destination Mac Address:
a2:55:f5:b3:27:ba (a2:55:f5:b3:27:ba)
Post Source Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)
Post NAT Source IPv4 Address: 10.1.20.203
Post NAT Destination IPv4 Address:
10.1.30.101
The NetFlow v9 also allows reporting the Source Transport Port and
Destination Transport Port in case of Port Address Translation,
which can be implemented in some network scenarios.
Post NAPT Source Transport Port: ©
Post NAPT Destination Transport Port: 0
Flow 8
[Duration: 70.010000000 seconds (switched)]
StartTime: 344852.270000000 seconds
EndTime: 344922.280000000 seconds
Packets: 40

Octets: 10916
InputInt: 11
OutputInt: ©
SrcAddr: 10.1.30.220
DstAddr: 10.1.30.101
Protocol: ICMP (1)
IP ToS: Oxco
SrcPort: O
DstPort: O
NextHop: ©0.0.0.0
DstMask: ©
SrcMask: ©
TCP Flags: Ox00
00.. = Reserved: 0x0
..0. = URG: Not used
..@ = ACK: Not used
. ©0... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
Sampling interval: ©
Sampling algorithm: Deterministic sampling
(1)
Destination Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)
Post Destination Mac Address:
HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
Post Source Mac Address: 00:00:00 _00:00:00
(00:00:00:00:00:00)
Post NAT Source IPv4 Address: 10.1.30.220
Post NAT Destination IPv4 Address:

10.1.30.101
Post NAPT Source Transport Port: ©
Post NAPT Destination Transport Port: ©
Flow 9
[Duration: 72.060000000 seconds (switched)]
StartTime: 344851.370000000 seconds
EndTime: 344923.430000000 seconds
Packets: 18
Octets: 5108
InputInt: 11
OutputInt: ©
SrcAddr: 192.168.254.1
DstAddr: 10.1.30.101
Protocol: ICMP (1)
IP ToS: OxcO
SrcPort: O
DstPort: O
NextHop: ©0.0.0.0
DstMask: ©
SrcMask: ©
TCP Flags: Ox00
00.. = Reserved: 0x0
..0. = URG: Not used
..0 = ACK: Not used
. ... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
Sampling interval: ©
Sampling algorithm: Deterministic sampling
(1)
Destination Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)

Source Mac Address: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7)

Post Destination Mac Address:
a2:55:f5:b3:27:ba (a2:55:f5:b3:27:ba)

Post Source Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)

Post NAT Source IPv4 Address: 192.168.254.1

Post NAT Destination IPv4 Address:
10.1.30.101

Post NAPT Source Transport Port: ©

Post NAPT Destination Transport Port: ©

Padding: 0000

The following frame describes a template packet for NetFlow v9,
containing all the information used to decode the frames matching the
template ID used in subsequent packets.

No. VLAN Time Source
Destination Protocol DST Port Length Info
125 14.560320 190.1.30.101
10.1.30.210 CFLOW omnisky 278 total: 2
(v9) records Obs-Domain-ID= @ [Data-

Template:256,257]
Frame 125: 278 bytes on wire (2224 bits), 278 bytes
captured (2224 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Oct 18, 2023 22:45:37.142446000 CEST
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1697661937.142446000 seconds

[Time delta from previous captured frame:
1.039961000 seconds]

[Time delta from previous displayed frame:
1.039961000 seconds]

[Time since reference or first frame: 14.560320000
seconds]

Frame Number: 125

Frame Length: 278 bytes (2224 bits)

Capture Length: 278 bytes (2224 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:udp:cflow]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]

Ethernet II, Src: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7), Dst: HewlettP_15:9c:45
(2¢:27:d7:15:9c¢:45)
Destination: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Destination (resolved): HewlettP_15:9c:45]
[Destination OUI: 2c:27:d7 (Hewlett Packard)]
[Destination OUI (resolved): Hewlett Packard]
Address: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Address (resolved): HewlettP_15:9c:45]
[Address OUI: 2c:27:d7 (Hewlett Packard)]
[Address OUI (resolved): Hewlett Packard]
ceee ¢000 tiie teee eeee eee. = LG bit:
Globally unique address (factory default)

ceee ¢00 ciie teee eeee oee. = LG bit:
Globally unique address (factory default)

ceee 0040 ciete teee eeee oeeo. = IG bit:
Individual address (unicast)

ceee 20e@ tiie teee cees oo.. = IG bit:
Individual address (unicast)

Source: Routerbo _d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Source (resolved): Routerbo_d8:3f:d7]
[Source OUI: d4:ca:6d (Routerboard.com)]
[Source OUI (resolved): Routerboard.com]
Address: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Address (resolved): Routerbo d8:3f:d7]
[Address OUI: d4:ca:6d (Routerboard.com)]

[Address OUI (resolved): Routerboard.com]

. .0. « +... = LG bit:
Globally un1que address (factory default)
.0. .« «... = LG bit:
Globally un1que address (factory default)
ceee 2000 tiit tiee ceee se.. = IG bit:
Individual address (unicast)
ceee 2040 ciie teee eeee eee. = IG bit:
Individual address (unicast)
Type: IPv4 (0x0800)

Internet Protocol Version 4, Src: 10.1.30.101, Dst:
10.1.30.210

0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CSO,
ECN: Not-ECT)
0000 00. .
Default (0)

Differentiated Services Codepoint:

..00 = Explicit Congestion Notification:
Not ECN- Capable Transport (0)

Total Length: 264
Identification: Oxd29e (53918)
Flags: 0x0000
2
Dttt teee seen
B
Fragment offset: ©
Time to live: 255
Protocol: UDP (17)
Header checksum: 0x970d [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.30.101
Source or Destination Address: 10.1.30.101

Reserved bit: Not set
Don't fragment: Not set
More fragments: Not set

[Source Host: 10.1.30.101]

[Source or Destination Host: 10.1.30.101]
Destination: 10.1.30.210

Source or Destination Address: 10.1.30.210
[Destination Host: 10.1.30.210]

[Source or Destination Host: 10.1.30.210]

User Datagram Protocol, Src Port: omnisky (2056), Dst
Port: omnisky (2056)

Source Port: omnisky (2056)
Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Length: 244
[Checksum: [missing]]
[Checksum Status: Not present]
[Stream index: 0]
[Timestamps]
[Time since first frame: 14.560320000 seconds]

[Time since previous frame: 1.040291000
seconds]

Cisco NetFlow/IPFIX
Version: 9
Count: 2
SysUptime: 344953.200000000 seconds
Timestamp: Oct 18, 2023 22:45:37.000000000 CEST
CurrentSecs: 1697661937
FlowSequence: 21
Sourceld: ©

Here begins the template definition, template IDs are 256 and 257. The
field meanings are described in a table published in the already mentioned
RFCs, and the data size is reported.
FlowSet 1 [id=0] (Data Template): 256,257
FlowSet Id: Data Template (V9) (0)

FlowSet Length: 216
Template (Id = 256, Count = 26)

Template Id: 256

Field Count: 26

Field (1/26): LAST_SWITCHED
Type: LAST_SWITCHED (21)
Length: 4

Field (2/26): FIRST_SWITCHED
Type: FIRST_SWITCHED (22)
Length: 4

Field (3/26): PKTS
Type: PKTS (2)
Length: 4

Field (4/26): BYTES
Type: BYTES (1)
Length: 4

Field (5/26): INPUT_SNMP
Type: INPUT_SNMP (10)
Length: 4

Field (6/26): OUTPUT_SNMP
Type: OUTPUT_SNMP (14)
Length: 4

These are of course (given the data size) related to IPv4 addresses; other
field codes with proper size are used in case of IPv6 addresses.

Field (7/26): IP_SRC_ADDR
Type: IP_SRC_ADDR (8)
Length: 4

Field (8/26): IP_DST_ADDR
Type: IP_DST_ADDR (12)
Length: 4

Field (9/26): PROTOCOL
Type: PROTOCOL (4)
Length: 1

Field (10/26): IP_TOS
Type: IP_TOS (5)
Length: 1

Field (11/26): L4_SRC_PORT
Type: L4_SRC_PORT (7)
Length: 2

Field (12/26): L4 _DST_PORT
Type: L4 _DST_PORT (11)
Length: 2

Field (13/26): IP_NEXT_HOP
Type: IP_NEXT_HOP (15)
Length: 4

Field (14/26): DST_MASK
Type: DST_MASK (13)
Length: 1

Field (15/26): SRC_MASK
Type: SRC_MASK (9)
Length: 1

Field (16/26): TCP_FLAGS
Type: TCP_FLAGS (6)
Length: 1

Field (17/26): SAMPLING_INTERVAL
Type: SAMPLING_INTERVAL (34)
Length: 4

Field (18/26): SAMPLING_ALGORITHM
Type: SAMPLING_ALGORITHM (35)
Length: 1

Field (19/26): DESTINATION_MAC
Type: DESTINATION_MAC (80)
Length: 6

Field (20/26): SRC_MAC
Type: SRC_MAC (56)
Length: 6

Although not strictly related to Layer 3 from the ISO/OSI network stack,
the source and destination MAC Addresses of the flow can also be reported.
Keep in mind that if devices are not directly connected, the source or the

destination MAC address could be one of the routing devices connected to
the flow exporter.

Field (21/26): DST_MAC
Type: DST_MAC (57)
Length: 6

Field (22/26): SOURCE_MAC
Type: SOURCE_MAC (81)
Length: 6

Field (23/26): postNATSourceIPv4Address
Type: postNATSourceIPv4Address (225)
Length: 4

Field (24/26):
postNATDestinationIPv4Address

Type: postNATDestinationIPv4Address
(226)

Length: 4

Field (25/26): postNAPTSourceTransportPort
Type: postNAPTSourceTransportPort (227)
Length: 2

Field (26/26):
postNAPTDestinationTransportPort

Type: postNAPTDestinationTransportPort
(228)

Length: 2
Template (Id = 257, Count = 25)
Template Id: 257
Field Count: 25
Field (1/25): IP_PROTOCOL_VERSION

Type: IP_PROTOCOL_VERSION (60)
Length: 1

Field (2/25): IPV6_SRC_ADDR
Type: IPV6_SRC_ADDR (27)
Length: 16

Field (3/25): IPV6_SRC_MASK
Type: IPV6_SRC_MASK (29)
Length: 1

Field (4/25): INPUT_SNMP
Type: INPUT_SNMP (10)
Length: 4

As you can see, in this example, template ID 256 is used for IPv4 flows,
while template ID 257 is used for [Pv6 flows.

Field (5/25): IPV6_DST_ADDR
Type: IPV6_DST_ADDR (28)
Length: 16

Field (6/25): IPV6_DST_MASK
Type: IPV6_DST_MASK (30)
Length: 1

Field (7/25): OUTPUT_SNMP
Type: OUTPUT_SNMP (14)
Length: 4

Field (8/25): IPV6_NEXT_HOP
Type: IPV6_NEXT_HOP (62)
Length: 16

Field (9/25): PROTOCOL
Type: PROTOCOL (4)

Length: 1

Field (10/25): TCP_FLAGS
Type: TCP_FLAGS (6)

Length: 1

Field (11/25): SAMPLING_ INTERVAL
Type: SAMPLING_INTERVAL (34)
Length: 4

Field (12/25): SAMPLING_ALGORITHM

Type: SAMPLING_ALGORITHM (35)
Length: 1

Field (13/25): IP_TOS
Type: IP_TOS (5)
Length: 1

Field (14/25): L4 _SRC_PORT
Type: L4 _SRC_PORT (7)
Length: 2

Field (15/25): L4_DST_PORT
Type: L4 _DST_PORT (11)
Length: 2

Field (16/25): FLOW_LABEL
Type: FLOW_LABEL (31)
Length: 4

Field (17/25): IPV6_OPTION_HEADERS
Type: IPV6_OPTION_HEADERS (64)
Length: 4

Field (18/25): LAST_SWITCHED
Type: LAST _SWITCHED (21)
Length: 4

Field (19/25): FIRST_SWITCHED
Type: FIRST SWITCHED (22)
Length: 4

Field (20/25): BYTES
Type: BYTES (1)
Length: 4

Field (21/25): PKTS
Type: PKTS (2)
Length: 4

Field (22/25): DESTINATION MAC
Type: DESTINATION_MAC (89)
Length: 6

Field (23/25): SRC_MAC

Type: SRC_MAC (56)
Length: 6

Field (24/25): DST_MAC
Type: DST_MAC (57)
Length: 6

Field (25/25): SOURCE_MAC
Type: SOURCE_MAC (81)
Length: 6

IPFIX

IPFIX is a standardized protocol for exporting network flow information,
that builds on the concepts of earlier flow protocols like NetFlow and
enhances them with greater flexibility, extensibility, and support for modern
network features. It was developed by the Internet Engineering Task
Force (IETF) to provide a common format for exporting flow data from
network devices for analysis, monitoring, and security purposes. IPFIX is
designed to be more flexible and extensible than earlier versions of
NetFlow, allowing for the export of a wide range of flow data attributes. It
enables the export of flow data for comprehensive network analysis,
monitoring, and security. Let us now learn more about IPFIX:

e IPFIX protocol overview: IPFIX is a protocol that enables network
devices to export flow information to a collector for analysis and
reporting. It builds upon the concepts of earlier versions of NetFlow
while introducing improvements in terms of flexibility, extensibility,
and support for different types of networks, including [Pv6 and MPLS.

e Key concepts:
o Flow: Similar to NetFlow, a flow in IPFIX represents a

unidirectional sequence of packets with common attributes, such as
source and destination IP addresses, ports, protocol, and more.

o Exporter: The network device generating and exporting IPFIX
records to a collector. It defines templates that specify the structure
of exported flow records.

o Collector: The server that receives IPFIX records from exporters,

processes the data, and provides insights into network behavior.

o Template: A crucial feature of IPFIX, templates define the
structure of exported flow data records. They specify which
attributes are included and their data types.

o Options template: An extension of the basic template, options
templates allow for the inclusion of optional attributes that are not
always present in all flows.

e IPFIX message structure: IPFIX messages consist of a header,
templates, and data records.

o Header:
» Version number: The version of IPFIX protocol being used (for
example, 10).
= Message length: The length of the entire IPFIX message,
including templates and data records.
» Export time: The timestamp when the message was exported.

» Sequence number: An incrementing value used to maintain
message order.

= Observation domain ID: An identifier for the domain or device
exporting the flow data.

o Template format: Templates define the structure of flow data
records and consist of the following elements:

= Template ID: A unique identifier for the template.
» Field count: The number of fields included in the template.

» Field type and length: For each field, the type of attribute and
its length.

o Data record format: Data records follow the structure defined by
templates and include attributes specified in the templates. These
attributes can include source IP, destination IP, ports, protocol,
packet and byte counts, and more.

o Option template format: Options templates are used to define
optional fields that might not be present in all flow records. They

include attributes similar to regular templates but allow for greater
flexibility.

e IPFIX operation:

o Template definition: Exporters define templates that describe the
attributes to be included in flow data records and options templates
for optional attributes.

o Flow identification and aggregation: Similar to other flow-based
protocols, the exporter identifies flows, aggregates data, and
updates counters.

o Flow timeout and record generation: Inactive flows or when the
export timer triggers, flow data records are generated using the
templates.

o Record export: Flow data records are encapsulated into IPFIX
messages and transmitted to the collector using UDP.

o Template management: Collectors maintain a template cache and
use templates to parse and interpret flow data records.

o Collection and analysis: The collector extracts and processes flow
data records based on templates, providing detailed network
analysis and insights.

Advantages of IPFIX

IPFIX offers a standardized, flexible, and extensible approach to exporting
flow data. Its support for [Pv6, MPLS, and optional attributes makes it
suitable for diverse network environments.

Here we can see a couple of Wireshark dissected IPFIX protocol packets. In
this example, a Mikrotik RB2011 (Firmware 7.11.2) with IP address
10.1.30.101 was configured to send packets to collector on 10.1.30.210 on
port 2056 (which Wireshark labels as service omnisky). The first packet
contains the templates and the second packet contains the data. Templates
are normally exported periodically and could have their dedicated packets
or can be mixed with data packets; normally, it is up to the vendor
implementation. As you can see, IPFIX is very similar to NetFlow V9.
Refer to the following:

No. VLAN Time Source

Destination Protocol DST Port Length Info
497 58.240001 190.1.30.101

10.1.30.210 CFLOW omnisky 354 IPFIX

flow (312 bytes) Obs-Domain-ID= 0 [Data-

Template:258,259]

The following frame describes a template packet for IPFIX, containing all
the information used to decode the frames matching the template ID used in
subsequent packets.

Frame 497: 354 bytes on wire (2832 bits), 354 bytes
captured (2832 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Oct 18, 2023 23:03:36.661494000 CEST
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1697663016.661494000 seconds

[Time delta from previous captured frame:
1.039578000 seconds]

[Time delta from previous displayed frame:
1.040034000 seconds]

[Time since reference or first frame: 58.240001000
seconds]

Frame Number: 497

Frame Length: 354 bytes (2832 bits)

Capture Length: 354 bytes (2832 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:udp:cflow]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]
Ethernet II, Src: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7), Dst: HewlettP_15:9c:45
(2c:27:d7:15:9c:45)

Destination: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)

[Destination (resolved): HewlettP_15:9c:45]

[Destination OUI: 2c:27:d7 (Hewlett Packard)]
[Destination OUI (resolved): Hewlett Packard]
Address: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Address (resolved): HewlettP_15:9c:45]
[Address OUI: 2c:27:d7 (Hewlett Packard)]
[Address OUI (resolved): Hewlett Packard]

. .0. .« «... = LG bit:
Globally un1que address (factory default)
.0. . +... = LG bit:
Globally un1que address (factory default)
e it teee teee oe.. = IG bit:
Individual address (unicast)
e it teee ceee oe.. = IG bit:
Individual address (unicast)

Sour

ce: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Source (resolved): Routerbo_d8:3f:d7]

[Source OUI: d4:ca:6d (Routerboard.com)]
[Source OUI (resolved): Routerboard.com]
Address: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Address (resolved): Routerbo_d8:3f:d7]
[Address OUI: d4:ca:6d (Routerboard.com)]
[Address OUI (resolved): Routerboard.com]

. .0. .« «... = LG bit:
Globally un1que address (factory default)
.0. . +... = LG bit:
Globally un1que address (factory default)
e it tiee teee oe.. = IG bit:
Individual address (unicast)
e it teee ceee oe.. = IG bit:
Individual address (unicast)

Type:

Internet
10.1.30.

0100

IPv4 (0x0800)

Protocol Version 4, Src: 10.1.30.101, Dst:
210

..., = Version: 4

. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CSO,
ECN: Not-ECT)

0000 00. .
Default (0)

Differentiated Services Codepoint:

cees ..00 = Explicit Congestion Notification:
Not ECN-Capable Transport (0)
Total Length: 340
Identification: ©xb30a (45834)
Flags: 0x0000
2
@ittt ceee eeen
B
Fragment offset: ©
Time to live: 255
Protocol: UDP (17)
Header checksum: Oxb655 [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.30.101
Source or Destination Address: 10.1.30.101
[Source Host: 10.1.30.101]
[Source or Destination Host: 10.1.30.101]
Destination: 10.1.30.210
Source or Destination Address: 10.1.30.210
[Destination Host: 10.1.30.210]
[Source or Destination Host: 10.1.30.210]

User Datagram Protocol, Src Port: omnisky (2056), Dst
Port: omnisky (2056)
Source Port: omnisky (2056)
Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Length: 320

Reserved bit: Not set
Don't fragment: Not set
More fragments: Not set

[Checksum: [missing]]
[Checksum Status: Not present]
[Stream index: 0]
[Timestamps]
[Time since first frame: 58.240001000 seconds]
[Time since previous frame: 1.040034000
seconds]
Cisco NetFlow/IPFIX
Version: 10
Length: 312
Note that, as previously described for NetFlow v9, here the timestamp of
the flow export is computed in a similar but slightly different way, always
considering the UNIX time epoch of 1/1/1970.
Timestamp: Oct 18, 2023 23:03:36.000000000 CEST
ExportTime: 1697663016
FlowSequence: 56
Observation Domain Id: ©
Set 1 [id=2] (Data Template): 258,259
FlowSet Id: Data Template (V10 [IPFIX]) (2)
FlowSet Length: 296
Template (Id = 258, Count = 37)
Template Id: 258
Field Count: 37
Field (1/37): IP_PROTOCOL_VERSION
Q... ¢vee ¢ees +e.. = Pen provided: No
.000 0000 0011 1100 = Type:
IP_PROTOCOL_VERSION (60)

Length: 1
Field (2/37): FIRST_SWITCHED
... vttt ¢ees +e.. = Pen provided: No

.000 0000 0001 0110 = Type:
FIRST_SWITCHED (22)
Length: 4

Field (3/37): LAST_SWITCHED
... v¢e¢cs ¢vee «... = Pen provided: No
.000 0000 0001 0101 = Type:
LAST _SWITCHED (21)

Length: 4
Field (4/37): systemInitTimeMilliseconds
... v¢e¢cs ¢vee «... = Pen provided: No

.000 0000 1010 0000 = Type:

systemInitTimeMilliseconds (160)
Length: 8

Being a derivative of NetFlow v9, IPFIX shares a lot of field codes with
NetFlow v9, but it also adds the Private Enterprise Number (PEN) for
custom fields. The PEN numbers are registered with IANA by companies
implementing flow exporters and their definitions are usually not public.
The bit of PEN provided is 0 if it is an RFC described field, otherwise 1 and
a PEN number field is also encoded in the field definition.

Field (5/37): PKTS

O.cv ciee = Pen provided: No
.000 0000 eaee 0010 = Type: PKTS (2)
Length: 4
Field (6/37): BYTES
O.cv ciee = Pen provided: No
.000 0000 eaee @001 = Type: BYTES (1)
Length: 4
Field (7/37): L4_SRC_PORT
% = Pen provided: No
.000 0000 eaee @111 = Type: L4 _SRC_PORT
(7)
Length: 2
Field (8/37): L4_DST_PORT
O.cv ciee = Pen provided: No

000 0000 0000 1011 < Type: L4_DST_PORT
(11)

(10)

(14)

(4)

(6)

(57)

Length: 2
Field (9/37):

Q... ...

.000 0000

Length: 4

Field (10/37):

... ...
.000 0000

Length: 4

Field (11/37):

...
.000 0000

Length: 1

Field (12/37):

Q... ...
.000 0000
Length: 1

Field (13/37):

... ...
.000 0000

Length: 1

Field (14/37):

...
.000 0000

Length: 6

Field (15/37):

... ...
.000 0000

INPUT_SNMP
ceee «... = Pen provided: No
0000 1010 = Type: INPUT_SNMP

OUTPUT_SNMP
« «... = Pen provided: No
0000 1110 = Type: OUTPUT_SNMP

PROTOCOL
.... = Pen provided: No
0000 0100 = Type: PROTOCOL

.... = Pen provided: No
0000 0101 = Type: IP_TOS (5)

TCP_FLAGS
.... = Pen provided: No

0000 0110 = Type: TCP_FLAGS
DST_MAC
.... = Pen provided: No
9011 1001 = Type: DST_MAC

DESTINATION_MAC
« «... = Pen provided: No
0101 0000 = Type:

DESTINATION_MAC (80)

(81)

(56)

(8)

(12)

(15)

(9)

Length: 6

Field (16/37):

...
.000 0000

Length: 6

Field (17/37):

...
.000 0000

Length: 6

Field (18/37):

...
.000 0000

Length: 4

Field (19/37):

...
.000 0000

Length: 4

Field (20/37):

...
.000 0000

Length: 4

Field (21/37):

...
.000 0000

Length: 1

Field (22/37):

SOURCE_MAC

0101 0001

SRC_MAC

0011 1000

IP_SRC_ADDR

0000 1000 =

IP_DST_ADDR

Pen provided: No

Type:

SOURCE_MAC

Pen provided: No

Type:

SRC_MAC

Pen provided: No

Type:

IP_SRC_ADDR

.... = Pen provided: No

0000 1100 =

IP_NEXT_HOP

Type:

IP_DST_ADDR

.... = Pen provided: No

0000 1111

SRC_MASK

0000 le01

DST_MASK

Type:

IP_NEXT_HOP

Pen provided: No

Type:

SRC_MASK

Q.

(13)
Length: 1

000 0000 0000 1101 =

.... = Pen provided:
Type: DST_MASK

No

The following are some IPFIX specific fields that can be used by IPFIX
decoders to provide further information about the flow.

Field (23/37):

e...

(192)
Length: 1

Field (24/37):

e...

IS_MULTICAST (206)
Length: 1

Field (25/37):

e...

IP_HEADER_LEN (189)
Length: 1

Field (26/37):

e...

ipTotalLength (224)
Length: 8

Field (27/37):

e...

(205)
Length: 2

Field (28/37):

e...

.000 0000 1100 1101 =

IP_TTL

cees « ««.. = Pen provided:
.000 0000 1100 0000 =

Type: IP_TTL

IS_MULTICAST

ceee « ««.. = Pen provided:
.000 0000 1100 1110 =

Type:

IP_HEADER_LEN

ceee « ««.. = Pen provided:
.000 0000 1011 1101 =

Type:

ipTotalLength

ceee « ««.. = Pen provided:
.000 0000 1110 0000 =

Type:

UDP_LENGTH

.... = Pen provided:
Type: UDP_LENGTH

TCP_SEQ_NUM

.... = Pen provided:

No

No

No

No

No

No

.000 0000 1011 1000 = Type: TCP_SEQ NUM

(184)
Length: 4
Field (29/37): TCP_ACK_NUM
Q... ¢ttt ¢ees +e.. = Pen provided: No
.000 0000 1011 1001 = Type: TCP_ACK_NUM
(185)
Length: 4
Field (30/37): TCP_WINDOW SIZE
... ¢ttt ¢ees +o.. = Pen provided: No

.000 0000 1011 1010 = Type:
TCP_WINDOW_SIZE (186)

Length: 2
Notice that, being an IETF standard and a general purpose exporting
protocol, IPFIX is not tied to TCP/UDP and ICMP only, but also supports
details for other protocols like IGMP.

Field (31/37): IGMP_TYPE
... ve¢cv ¢vee «... = Pen provided: No
.000 0000 0010 0001 = Type: IGMP_TYPE

(33)
Length: 1
Field (32/37): ICMP_IPv4 TYPE
... ve¢cv ¢vee «... = Pen provided: No

.000 0000 1011 0000 = Type:
ICMP_IPv4_TYPE (176)

Length: 1
Field (33/37): ICMP_IPv4_CODE
... ve¢ct ¢vee «... = Pen provided: No

.000 0000 1011 0001 = Type:
ICMP_IPv4_CODE (177)
Length: 1
Field (34/37): postNATSourceIPv4Address
... ve¢ct ¢vee «... = Pen provided: No

.000 0000 1110 0001
postNATSourceIPv4Address (225)
Length: 4
Field (35/37):
postNATDestinationIPv4Address
O.ve ceee ceee

Type:

Pen provided: No

.000 0000 1110 0010 = Type:
postNATDestinationIPv4Address (226)
Length: 4
Field (36/37): postNAPTSourceTransportPort
[.... = Pen provided: No
.000 0000 1110 0011 = Type:

postNAPTSourceTransportPort (227)
Length: 2
Field (37/37):
postNAPTDestinationTransportPort
[.... = Pen provided: No

.000 0000 1110 0100 = Type:
postNAPTDestinationTransportPort (228)

Length: 2
Template (Id = 259, Count = 34)
Template Id: 259
Field Count: 34
Field (1/34): IP_PROTOCOL_VERSION
... ve¢ct ¢vee «... = Pen provided: No

.000 0000 9011 1100 = Type:
IP_PROTOCOL_VERSION (60)

Length: 1
Field (2/34): FIRST_SWITCHED
... ve¢ct ¢vee «... = Pen provided: No

.000 0000 0001 0110 = Type:
FIRST_SWITCHED (22)

Length: 4

Field (3/34): LAST_SWITCHED
... v¢e¢cs ¢vee «... = Pen provided: No
.000 0000 0001 0101 = Type:
LAST _SWITCHED (21)
Length: 4
As seen before, IPFIX also considers the boot time of the exporter to
compute the start and stop of the flow, which is reported in the two previous
fields, FIRST_SWITCHED and LAST_SWITCHED.
Field (4/34): systemInitTimeMilliseconds
... ve¢es ¢vee «o.. = Pen provided: No

.000 0000 1010 0000 = Type:
systemInitTimeMilliseconds (160)
Length: 8
Field (5/34): PKTS
Q... coen = Pen provided: No
.000 0000 eeee 0010 = Type: PKTS (2)
Length: 4
Field (6/34): BYTES
Q... coen = Pen provided: No
.000 0000 eeee @001 = Type: BYTES (1)
Length: 4
Field (7/34): L4_SRC_PORT
... ve¢cs ¢vee «o.. = Pen provided: No
.000 0000 eeee 0111 = Type: L4_SRC_PORT
(7)
Length: 2
Field (8/34): L4 _DST_PORT
... ve¢cs ¢vee «o.. = Pen provided: No
.000 0000 eeee 1011 = Type: L4 _DST_PORT
(11)

Length: 2
Field (9/34): INPUT_SNMP
... ve¢cs ¢vee «o.. = Pen provided: No

(10)

(14)

(4)

(6)

(57)

.000 0000

Length: 4

Field (10/34):

...
.000 0000

Length: 4

Field (11/34):

...
.000 0000

Length: 1

Field (12/34):

Q. o0
.000 0000
Length: 1

Field (13/34):

...
.000 0000

Length: 1

Field (14/34):

...
.000 0000

Length: 6

Field (15/34):

...
.000 0000

DESTINATION_MAC (80)

Length: 6

Field (16/34):

0000 1010 = Type: INPUT_SNMP

OUTPUT_SNMP
= Pen provided: No
Type: OUTPUT_SNMP

0000 1110

PROTOCOL
.... = Pen provided: No
0000 0100 = Type: PROTOCOL

.... = Pen provided: No
eeee 0101 = Type: IP_TOS (5)

TCP_FLAGS
.... = Pen provided: No
0000 0110 = Type: TCP_FLAGS

DST_MAC
.... = Pen provided: No
0011 1001 Type: DST_MAC

DESTINATION_MAC
« «+«.. = Pen provided: No
6101 0000 = Type:

SOURCE_MAC

0. = Pen provided: No
660 0600 0101 0001 = Type: SOURCE_MAC
(81)
Length: 6
Field (17/34): SRC_MAC
% = Pen provided: No
.000 0000 0011 1000 = Type: SRC_MAC
(56)
Length: 6
Field (18/34): IPV6_SRC_ADDR
... ve¢et ¢eee «o.. = Pen provided: No

.000 0000 9091 1011 = Type:
IPV6_SRC_ADDR (27)

Length: 16
Field (19/34): IPV6_DST_ADDR
Q... ¢vee ¢ees oo.. = Pen provided: No

.000 0000 9091 1100 = Type:
IPV6_DST_ADDR (28)

Length: 16
Field (20/34): IPV6_NEXT_HOP
... ve¢es ¢oee «o.. = Pen provided: No

.000 0000 0011 1110 = Type:
IPV6_NEXT_HOP (62)
Length: 16

Note that the MASK fields normally are populated with values only if the
flow exporter has a direct IP address on the interface that is part of the flow,
otherwise it is quite difficult to obtain it.
Field (21/34): IPV6_SRC_MASK
Q... ¢vee ¢ees +e.. = Pen provided: No
.000 0000 0001 1101 = Type:
IPV6_SRC_MASK (29)
Length: 1
Field (22/34): IPV6_DST_MASK

... ...

.000 0600
IPV6_DST_MASK (30)

Length: 1

Field (23/34):

...

.000 0000
(192)

Length: 1

Field (24/34):

...

.000 0000
IS_MULTICAST (206)

Length: 1

Field (25/34):

...

.000 0000
IP_HEADER_LEN (189)

Length: 1

Field (26/34):

0...

.000 0000
ipTotalLength (224)

Length: 8

Field (27/34):

...

.000 0000
(205)

Length: 2

0001 1110 = Type:
IP_TTL
.... = Pen provided:
1100 0000 = Type: IP_TTL

IS_MULTICAST

.... = Pen provided:

1100 1110 = Type:

IP_HEADER_LEN

.... = Pen provided:

Pen provided:

No

No

No

No

No

No

1011 1101 = Type:
ipTotalLength
« «... = Pen provided:
1110 0000 = Type:
UDP_LENGTH
« «... = Pen provided:
1100 1101 = Type: UDP_LENGTH

It is interesting to see that, while NetFlow v5 provides only TCP flags
information about TCP flows, IPFIX can be much more detailed with the

information regarding TCP flows.

Field (28/34):

TCP_SEQ_NUM

... ...

.000 0600
(184)

Length: 4

Field (29/34):

...

.000 0000
(185)

Length: 4

Field (30/34):

...

.000 0000
TCP_WINDOW_SIZE (186)

Length: 2

Field (31/34):

...

.000 0000
(33)

Length: 1

Field (32/34):

...

.000 0000
ICMP_IPv6_TYPE (178)

Length: 1

Field (33/34):

...

.000 0000
ICMP_IPv6_CODE (179)

Length: 1

Field (34/34):

e... o o o o
.000 0000
(31)

« «+«.. = Pen provided: No
1911 1000 = Type: TCP_SEQ_NUM

TCP_ACK_NUM
« «+«.. = Pen provided: No
1011 1001 = Type: TCP_ACK_NUM

TCP_WINDOW_SIZE
« «+«.. = Pen provided: No
1011 1010 = Type:

IGMP_TYPE
« «+«.. = Pen provided: No
0010 0001 = Type: IGMP_TYPE

ICMP_IPv6_TYPE
« «+«.. = Pen provided: No
1011 0010 = Type:

ICMP_IPv6_CODE
« «+«.. = Pen provided: No
1011 0011 = Type:

FLOW_LABEL
« «+«.. = Pen provided: No
0001 1111 = Type: FLOW_LABEL

Length: 4

The following frame describes a data packet for IPFIX, encoding data using
the previously received template IDs.
No. VLAN Time Source
Destination Protocol DST Port Length Info

528 59.279943 190.1.30.101
10.1.30.210 CFLOW omnisky 178 IPFIX
flow (136 bytes) Obs-Domain-ID= 0 [Data:258]

Frame 528: 178 bytes on wire (1424 bits), 178 bytes
captured (1424 bits)

Encapsulation type: Ethernet (1)

Arrival Time: Oct 18, 2023 23:03:37.701436000 CEST
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1697663017.701436000 seconds

[Time delta from previous captured frame:
1.039644000 seconds]

[Time delta from previous displayed frame:
1.039942000 seconds]

[Time since reference or first frame: 59.279943000
seconds]

Frame Number: 528

Frame Length: 178 bytes (1424 bits)

Capture Length: 178 bytes (1424 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:udp:cflow]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]
Ethernet II, Src: Routerbo_d8:3f:d7
(d4:ca:6d:d8:3f:d7), Dst: HewlettP_15:9c:45
(2¢c:27:d7:15:9c:45)

Destination: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)

[Destination (resolved): HewlettP_15:9c:45]

[Destination OUI: 2c:27:d7 (Hewlett Packard)]
[Destination OUI (resolved): Hewlett Packard]
Address: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Address (resolved): HewlettP_15:9c:45]
[Address OUI: 2c:27:d7 (Hewlett Packard)]
[Address OUI (resolved): Hewlett Packard]

. .0. .« «... = LG bit:
Globally un1que address (factory default)
.0. . +... = LG bit:
Globally un1que address (factory default)
e it teee teee oe.. = IG bit:
Individual address (unicast)
e it teee ceee oe.. = IG bit:
Individual address (unicast)

Sour

ce: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Source (resolved): Routerbo_d8:3f:d7]

[Source OUI: d4:ca:6d (Routerboard.com)]
[Source OUI (resolved): Routerboard.com]
Address: Routerbo_d8:3f:d7 (d4:ca:6d:d8:3f:d7)
[Address (resolved): Routerbo_d8:3f:d7]
[Address OUI: d4:ca:6d (Routerboard.com)]
[Address OUI (resolved): Routerboard.com]

. .0. .« «... = LG bit:
Globally un1que address (factory default)
.0. . +... = LG bit:
Globally un1que address (factory default)
e it tiee teee oe.. = IG bit:
Individual address (unicast)
e it teee ceee oe.. = IG bit:
Individual address (unicast)

Type:

Internet
10.1.30.

0100

IPv4 (0x0800)

Protocol Version 4, Src: 10.1.30.101, Dst:
210

..., = Version: 4

. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CSO,
ECN: Not-ECT)

0000 00. .
Default (0)

Differentiated Services Codepoint:

cees ..00 = Explicit Congestion Notification:
Not ECN-Capable Transport (0)
Total Length: 164
Identification: @xb30@b (45835)
Flags: 0x0000
Qive teee cone ceen
@ittt ceee eeen
B
Fragment offset: ©
Time to live: 255
Protocol: UDP (17)
Header checksum: 0xb704 [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.30.101
Source or Destination Address: 10.1.30.101
[Source Host: 10.1.30.101]
[Source or Destination Host: 10.1.30.101]
Destination: 10.1.30.210
Source or Destination Address: 10.1.30.210
[Destination Host: 10.1.30.210]
[Source or Destination Host: 10.1.30.210]

User Datagram Protocol, Src Port: omnisky (2056), Dst
Port: omnisky (2056)
Source Port: omnisky (2056)
Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Source or Destination Port: omnisky (2056)
Length: 144

Reserved bit: Not set
Don't fragment: Not set
More fragments: Not set

[Checksum: [missing]]
[Checksum Status: Not present]
[Stream index: 0]
[Timestamps]
[Time since first frame: 59.279943000 seconds]

[Time since previous frame: 1.039942000
seconds]

Cisco NetFlow/IPFIX
Version: 10
Length: 136
Timestamp: Oct 18, 2023 23:03:37.000000000 CEST
ExportTime: 1697663017
FlowSequence: 56
Observation Domain Id: ©
Set 1 [id=258] (1 flows)
FlowSet Id: (Data) (258)
FlowSet Length: 120
[Template Frame: 497]
Flow 1
IPVersion: 4
[Duration: 0.000000000 seconds (switched)]
StartTime: 346017.450000000 seconds
EndTime: 346017.450000000 seconds
Note how the start and stop of the flow are reported. You get the system init
time (which is based on the UNIX time epoch of 1/1/1970) and then the

seconds after this value to understand the timestamp of the beginning and
ending of the flow.

System Init Time: Oct 14, 2023
22:56:23.941000000 CEST

Packets: 1

Octets: 190

SrcPort: 5678

DstPort: 5678

InputInt: 218
OutputInt: ©
Protocol: UDP (17)

IP ToS: Ox00
TCP Flags: Ox00
00.. = Reserved: 0x0
..0. = URG: Not used
«.® = ACK: Not used

. ©0... = PSH: Not used
.0.. = RST: Not used
..0. = SYN: Not used
..0 = FIN: Not used
Post Destination Mac Address: Broadcast
(Ff:ff:ff:Ff.FF:FF)
Destination Mac Address: Routerbo _d8:3f:d8
(d4:ca:6d:d8:3f:d8)
Post Source Mac Address: 00:00:00 00:00:00
(00:00:00:00:00:00)
Source Mac Address: Routerbo_a8:82:a6
(b8:69:f4:a8:82:a6)
SrcAddr: 10.1.61.2
DstAddr: 255.255.255.255
NextHop: ©0.0.0.0
SrcMask: ©
DstMask: ©
IP TTL: 64
IsMulticast: Ox00
IP Header Length: 5
IP Total Length: 190
UDP Length: 170
TCP Sequence Number: ©
TCP Acknowledgement Number: ©
TCP Windows Size: ©

IGMP Type: ©

IPv4 ICMP Type: ©

IPv4 ICMP Code: ©

Post NAT Source IPv4 Address: 10.1.61.2

Post NAT Destination IPv4 Address:
255,255,255, 255

Post NAPT Source Transport Port: 5678

Post NAPT Destination Transport Port: 5678

sFlow v5

sFlow is a network monitoring protocol that provides real-time visibility
into network traffic by sampling packets and collecting statistics. sFlow
version 5 (sFlow v5) is an enhancement of the sFlow protocol, designed to
offer more comprehensive and flexible monitoring capabilities. sFlow v5 is
an advanced network monitoring protocol that uses sampling and counter
collection to provide real-time visibility into network traffic patterns. It
allows network administrators to monitor and analyze network behavior
without overwhelming the monitoring infrastructure. Let us now learn more
about sFlow v5:

e sFlow v5 protocol overview: sFlow v5 is a protocol that allows
network devices, such as switches and routers, to collect and send
network traffic data to a monitoring station for analysis. Unlike
traditional methods that involve capturing and storing all packets,
sFlow uses a sampling approach to provide a representative view of
network activity without overwhelming the monitoring infrastructure.

e Key concepts:

o Packet sampling: sFlow captures a subset of packets passing
through a network device, rather than capturing every packet. This
approach helps reduce the load on both the network device and the
monitoring infrastructure while still providing valuable insights.

o Counter sampling: In addition to packet sampling, sFlow also

collects counters that track various statistics about network flows,
such as the number of packets and bytes transferred, for each

sampled flow.

o sFlow agent: The network device (switch, router, and so on.) that
generates and sends sFlow data to a collector. The agent samples
packets, collects counter information, and encapsulates data for
transmission.

o sFlow collector: The server or software application that receives
and processes sFlow data from multiple agents. It performs
analysis, reporting, and visualization of network traffic patterns.

e sFlow v5 packet structure: An sFlow v5 packet consists of header
information, followed by a series of sampled packet data and counter
samples.

o Header:

Version number: 5 (indicating sFlow v5).

Agent address: The I[P address of the sFlow agent that
generated the packet.

Sub-agent ID: An identifier for different agent instances on the
same device.

Sequence number: An incrementing value used for packet
ordering and loss detection.

System uptime: Time in milliseconds since the device was
booted.

Sample count: Number of samples in the packet.

o Sampled packet data: For each packet sample, the following
information is included:

Sequence number: A unique identifier for the sample within the
packet.

Source ID: An identifier for the source of the packet data.
Sample rate: The rate at which packets were sampled compared
to the total number of packets.

Packet data: A snapshot of the sampled packet, including
header and payload data.

(0]

Counter samples: Counter samples capture various statistics
related to network flows, such as packet and byte counts, interface
information, and more.

e sFlow operation:

(¢]

Sampling configuration: Network administrators configure the
sFlow agent on network devices to specify the sampling rate and
other settings.

Packet and counter sampling: The sFlow agent samples incoming
packets and collects counter information at the configured rate.

Packet and counter encapsulation: Sampled packet data and
counter samples are encapsulated into sFlow v5 packets.

Packet transmission: The sFlow agent sends the encapsulated
packets to the sFlow collector using UDP.

Collection and analysis: The collector receives sFlow packets,
extracts sampled packet data and counter samples, and performs
analysis, reporting, and visualization of network traffic patterns.

Advantages of sFlow v5

The advantages of sFlow v5 are as follows:

e Reduced overhead: The sampling approach reduces the load on both
the network device and the monitoring infrastructure, allowing for
efficient and scalable network monitoring.

e Real-time insights: sFlow provides real-time visibility into network
traffic patterns, aiding in network troubleshooting, capacity planning,
and security analysis.

e Flexibility: sFlow v5 offers flexibility in terms of the types of data
collected, including packet samples and counter samples, providing a
comprehensive view of network behavior.

There are several RFC related to the sFlow protocol. sFlow is an open
standard network monitoring and sampling technology maintained by
sFlow.org. Here are some key RFCs related to the sFlow protocol:

e RFC 3176:

(0]

Title: sFlow: A Method for Monitoring Traffic in Switched and

Routed Networks
o URL: RFC 3176

e RFC 5353:

o Title: Endpoint Handlespace Redundancy Protocol (ENRP)
o URL: RFC 5353

o Note: This RFC defines the registration of the sFlow standard data
formats.

e RFC 3177:

o Title: IEEE 802.1X Authentication as a Network Access Layer
Protocol

o URL: RFC 3177

o Note: This RFC mentions sFlow in the context of monitoring IEEE
802.1X authentication traffic.

Here we can see a Wireshark dissected sFlow V5 protocol packet. In this
example, an HP Procurve 2610-24 switch (Firmware R.11.25) with IP
Address 10.1.30.9 was configured to send packets to collector on
10.1.30.210 on port 6343 (which Wireshark labels as service InFlow). The
packet contains several information: several counters for interfaces and also
a flow between SRC IP 10.1.20.21 and multicast address 224.0.0.18 for a
Virtual Router Redundancy Protocol (VRRP) packet it saw:

No. VLAN Time Source

Destination Protocol DST Port Length Info
12 22.213469 10.1.30.9

10.1.30.210 sFlow sflow 734 V5,

agent 10.1.30.9, sub-agent ID 0, seq 4184078, 4 samples

Frame 12: 734 bytes on wire (5872 bits), 734 bytes
captured (5872 bits)

Encapsulation type: Ethernet (1)

Arrival Time: Oct 18, 2023 23:11:27.260772000 CEST
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1697663487.260772000 seconds

[Time delta from previous captured frame:

1.999618000 seconds]

[Time delta from previous displayed frame:
1.999618000 seconds]

[Time since reference or first frame: 22.213469000
seconds]

Frame Number: 12

Frame Length: 734 bytes (5872 bits)

Capture Length: 734 bytes (5872 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame:
eth:ethertype:ip:udp:sflow:eth:ethertype:ip:vrrp:vssmon
itoring]

[Coloring Rule Name: Routing]

[Coloring Rule String: hsrp || eigrp || ospf || bgp
|| cdp || vrrp || carp [| gvrp || igmp || ismp]
Ethernet II, Src: ProCurve_38:e7:c0
(00:25:61:38:e7:¢c0), Dst: HewlettP_15:9c:45
(2¢:27:d7:15:9c¢:45)

Destination: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Destination (resolved): HewlettP_15:9c:45]
[Destination OUI: 2c:27:d7 (Hewlett Packard)]
[Destination OUI (resolved): Hewlett Packard]
Address: HewlettP_15:9c:45 (2c:27:d7:15:9c:45)
[Address (resolved): HewlettP_15:9c:45]
[Address OUI: 2c:27:d7 (Hewlett Packard)]
[Address OUI (resolved): Hewlett Packard]
ceee ¢000 tiie teee eeee eee. = LG bit:

Globally unique address (factory default)
ceee 0000 tiie tiee eeee se.. = LG bit:
Globally unique address (factory default)
ee® tiit teee eeee oe.. = IG bit:
Individual address (unicast)
ee@ tiit teee cees oo.. = IG bit:

Individual address (unicast)
Source: ProCurve_38:e7:cO (00:25:61:38:e7:¢0)
[Source (resolved): ProCurve_38:e7:c0]
[Source OUI: 00:25:61 (ProCurve Networking b]
[Source OUI (resolved): ProCurve Networking by

HP]
Address: ProCurve_38:e7:c0 (00:25:61:38:e7:¢c0)
[Address (resolved): ProCurve_38:e7:cO]
[Address OUI: 00:25:61 (ProCurve Networking b]
[Address OUI (resolved): ProCurve Networking by
HP]
.0. .« «... = LG bit:
Globally un1que address (factory default)
.0. .« «... = LG bit:
Globally un1que address (factory default)
ceee 20e@ tiie teee cees oo.. = IG bit:
Individual address (unicast)
e it teee teee oe.. = IG bit:

Individual address (unicast)
Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 10.1.30.9, Dst:
10.1.30.210
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CSO,
ECN: Not-ECT)
0000 00. .
Default (0)

Differentiated Services Codepoint:

..00 = Explicit Congestion Notification:
Not ECN- Capable Transport (0)
Total Length: 720
Identification: ©x29bd (10685)
Flags: 0x0000
O.cv ¢eve esee +... = Reserved bit: Not set

@.. viev teee ooe. = Don't fragment: Not set
ee@. ..iv teee ve.. = More fragments: Not set
Fragment offset: ©
Time to live: 64
Protocol: UDP (17)
Header checksum: Oxfd83 [validation disabled]
[Header checksum status: Unverified]
Source: 10.1.30.9
Source or Destination Address: 10.1.30.9
[Source Host: 10.1.30.9]
[Source or Destination Host: 10.1.30.9]
Destination: 10.1.30.210
Source or Destination Address: 10.1.30.210
[Destination Host: 10.1.30.210]
[Source or Destination Host: 10.1.30.210]
Here begins the sFlow packet data:

User Datagram Protocol, Src Port: blackjack (1025), Dst
Port: sflow (6343)

Source Port: blackjack (1025)
Destination Port: sflow (6343)
Source or Destination Port: blackjack (1025)
Source or Destination Port: sflow (6343)
Length: 700
Checksum: 0x4f80 [unverified]
[Checksum Status: Unverified]
[Stream index: 0]
[Timestamps]
[Time since first frame: 22.213469000 seconds]

[Time since previous frame: 1.999618000
seconds]

InMon sFlow
Datagram version: 5
Agent address type: IPv4 (1)

Agent address: 10.1.30.9

Sub-agent ID: ©

Sequence number: 4184078
As you see, the sFlow protocol also relies on system uptime for computing
flows timestamps.

SysUptime: 1892 days, 8 hours, 35 minutes, 58
seconds (163499758s)

NumSamples: 4

Flow sample, seq 2664459

0000 0000 0000 PPPO PPPO eoso =

Enterprise: standard sFlow (0)

. 0000 0000 0001 = sFlow

sample type: Flow sample (1)

Sample length (byte): 128

Sequence number: 2664459

0000 0000 ceee cees cose ssee sees =
Source ID class: ©
. . 0000 0000 0000 0000 0001 1010 =
Index: 26

Sampling rate: 1 out of 20 packets

Sample pool: 769031139 total packets

Dropped packets: 35552031

Input interface (ifIndex): 26

Output interface: ox3fffffff

00.. tivv coee seee sees sese ssse sees =
Output interface format: ifindex (0)
..11 1111 1111 1111 1111 1111 1111 1111 =

Output interface value: 1073741823
As you will see, the information provided by sFlow is similar to NetFlow
and IPFIX, but more tied to Layer 2 of the ISO/OSI stack, mostly relating
to switching.

Flow record: 1

Raw packet header

0000 0000 000D 0PPY PPPOo.. =
Enterprise: standard sFlow (0)
Format: Raw packet header (1)
Flow data length (byte): 88
Header protocol: Ethernet (1)
Frame Length: 78
Payload removed: 8
Original packet length: 72
Header of sampled packet:
01005€00001200005€00010208004500038b7e800001f70...
Ethernet II, Src: IETF-VRRP-VRID_02
(00:00:5€:00:01:02), Dst: IPv4mcast_12
(01:00:5€:00:00:12)
Destination: IPv4mcast_12
(01:00:5€:00:00:12)
[Destination (resolved):
IPv4mcast_12]
[Destination OUI: 01:00:5¢e]
Address: IPv4mcast_12
(01:00:5€:00:00:12)
[Address (resolved):
IPvdmcast_12]
[Address OUI: 01:00:5e]
B IS
LG bit: Globally unique address (factory default)
ceee eeB0 e tiee tees cees
LG bit: Globally unique address (factory default)
e
IG bit: Group address (multicast/broadcast)
B
IG bit: Group address (multicast/broadcast)
Source: IETF-VRRP-VRID_©2
(00:00:5€:00:01:02)
[Source (resolved): IETF-VRRP-

VRID 02]
[Source OUI: 00:00:5e (ICANN,
IANA Departmen]

[Source OUI (resolved): ICANN,
IANA Department]

Address: IETF-VRRP-VRID_02
(00:00:5€:00:01:02)

[Address (resolved): IETF-VRRP-
VRID 02]

[Address OUI: 00:00:5e (ICANN,
IANA Departmen]

[Address OUI (resolved): ICANN,
IANA Department]
B -
LG bit: Globally unique address (factory default)
ceee eeBi tiie tiee tees cees =
LG bit: Globally unique address (factory default)
-
IG bit: Individual address (unicast)
ceee 0000 tiie teer cees eess =
IG bit: Individual address (unicast)
Some fields are common, like protocol, source and destination IP.
Type: IPv4 (0x0800)
Internet Protocol Version 4, Src:
10.1.20.21, Dst: 224.0.0.18
0100 = Version: 4
. 0101 = Header Length: 20 bytes
(5)
Differentiated Services Field: Oxe©
(DSCP: CS7, ECN: Not-ECT)
1110 00.. = Differentiated
Services Codepoint: Class Selector 7 (56)
cess +.00 = Explicit Congestion
Notification: Not ECN-Capable Transport (0)

Total Length: 56
Identification: Oxb7e8 (47080)
Flags: Ox0000

O.cc et ceee «... = Reserved
bit: Not set

@i tiee teee eoee =Don't
fragment: Not set

ce@. it teee oo = More

fragments: Not set
Fragment offset: ©
Time to live: 255
Protocol: VRRP (112)
Header checksum: 0x0465 [validation

disabled]

[Header checksum status:
Unverified]

Source: 10.1.20.21

Source or Destination Address:
10.1.20.21

[Source Host: 10.1.20.21]

[Source or Destination Host:
10.1.20.21]

Destination: 224.0.0.18

Source or Destination Address:
224.0.0.18

[Destination Host: 224.0.0.18]

[Source or Destination Host:
224.0.0.18]

While some others deep dive into Layer 2 details like the ones regarding
VRRP.
Virtual Router Redundancy Protocol
Version 2, Packet type 1
(Advertisement)
0010 = VRRP protocol

version: 2

Advertisement (1)

. 0001 = VRRP packet type:

Virtual Rtr ID: 2

Priority: @ (Current Master has
stopped participating in VRRP)

Addr Count: 7

Auth Type: No Authentication (9)

Adver Int: 1

Checksum: 0x14dd [correct]
[Checksum Status: Good]

IP
IP
IP
IP
IP
IP
IP

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Counters sample, seq 557290

0000 0000 0000 0000 0000

Enterprise: standard sFlow (0)

ceee seee eeee o . 0000 0000 0010
sample type: Counters sample (2)

62.57.96.212
4.53.57.4
156.97.156.136
214.104.243.39
184.150.206.141
68.218.35.178
74.41.177.124

sFlow

Sample length (byte): 168

Sequence number: 557290

0000 0000
Source ID type: ©

. 0000 0000 0000 0000 0000 0010

Source ID index: 2

Counters records: 2
Generic interface counters

0000 0000 00O 00O PPOO eoo. =
Enterprise: standard sFlow (©)

ceee sess eees o . 0000 0000 0001 =
Format: Generic interface counters (1)

Flow data length (byte): 88
We also see the Interface identifiers, still relaying on the SNMP values,
and the physical duplex status and the Up or Down status of the interface.

Interface index: 2

Interface Type: 6

Interface Speed: 100000000

Interface Direction: Full-Duplex (1)

IfAdminStatus: Up

IfOperStatus: Up

Input Octets: 37600768

Input Packets: ©

Input Multicast Packets: ©

Input Broadcast Packets: 587512

Input Discarded Packets: ©

Input Errors: 0

Input Unknown Protocol Packets: ©

Output Octets: 331348498

Output Packets: ©

Output Multicast Packets: 4674684

Output Broadcast Packets: ©

Output Discarded Packets: ©

Output Errors: 0

Promiscuous Mode: ©

Ethernet interface counters

0000 0000 0000 00O PPPO, =
Enterprise: standard sFlow (0)

cese sees seee . 0000 0000 0010 =
Format: Ethernet interface counters (2)

Flow data length (byte): 52

Alignment Errors: ©

We even have more details regarding the Layer 2 counters.
FCS Errors: ©
Single Collision Frames: ©
Multiple Collision Frames: ©
SQE Test Errors: ©
Deferred Transmissions: ©
Late Collisions: ©
Excessive Collisions: ©
Internal Mac Transmit Errors: 0
Carrier Sense Errors: 1
Frame Too Longs: ©
Internal Mac Receive Errors: 0
Symbol Errors: ©

Counters sample, seq 558052

0000 0000 00O 0PPO PPOO ceo. =
Enterprise: standard sFlow (0)

ceee seee eeee o . 0000 0000 0010
sample type: Counters sample (2)

Sample length (byte): 168

Sequence number: 558052

0000 POOOce coee coes ssee sses =
Source ID type: ©

. 0000 0000 00O 0VPO 00O 0100
Source ID index: 4

Counters records: 2
Generic interface counters

0000 0000 00PO 00O PPPO eoo. =
Enterprise: standard sFlow (0)

sFlow

cees sese eese o . 0000 0000 0001 =
Format: Generic interface counters (1)

Flow data length (byte): 88

Interface index: 4

Interface Type: 6
Interface Speed: 100000000
Interface Direction: Full-Duplex (1)

IfAdminStatus: Up

IfOperStatus: Up

Input Octets: 37840554

Input Packets: 2799

Input Multicast Packets: ©

Input Broadcast Packets: 587015

Input Discarded Packets: ©

Input Errors: 0

Input Unknown Protocol Packets: ©

Output Octets: 333014837

Output Packets: 5113

Output Multicast Packets: 4668343

Output Broadcast Packets: ©

Output Discarded Packets: ©

Output Errors: ©

Promiscuous Mode: ©

Ethernet interface counters

0000 0000 000D 0PPO PPPOo.. =
Enterprise: standard sFlow (0)

cees sese esse e . 0000 0000 0010 =
Format: Ethernet interface counters (2)

Flow data length (byte): 52
It even goes deeper relating to the switching interface counting
input/output/broadcast/multicast and other packets.

Alignment Errors: 0O

FCS Errors: O

Single Collision Frames: ©

Multiple Collision Frames: ©

SQE Test Errors: ©
Deferred Transmissions: ©
Late Collisions: ©
Excessive Collisions: ©
Internal Mac Transmit Errors: 0
Carrier Sense Errors: 1
Frame Too Longs: ©
Internal Mac Receive Errors: 0
Symbol Errors: ©

Counters sample, seq 557479

0000 0000 0000 PPPY PO cooso =
Enterprise: standard sFlow (9)

. 0000 0000 0010 = sFlow

sample type: Counters sample (2)
Sample length (byte): 168
Sequence number: 557479
0000 00O ceee e sees sese =
Source ID type: ©

. . 0000 00O 0PPO 00VO 0001 1001
Source ID index: 25

Counters records: 2
Generic interface counters

0000 0000 000D 0PPO PPPO se.. =
Enterprise: standard sFlow (9)

ceee sees seee e . 0000 0000 0001 =
Format: Generic interface counters (1)

Flow data length (byte): 88

Interface index: 25

Interface Type: 6

Interface Speed: 100000000

Interface Direction: Full-Duplex (1)

IfAdminStatus: Up

IfOperStatus: Down
Input Octets: ©
Input Packets: ©
Input Multicast Packets: ©
Input Broadcast Packets: ©
Input Discarded Packets: ©
Input Errors: 0
Input Unknown Protocol Packets: ©
Output Octets: ©
Output Packets: ©
Output Multicast Packets:
Output Broadcast Packets:
Output Discarded Packets: ©
Output Errors: ©
Promiscuous Mode: ©

Ethernet interface counters

0000 0000 00O 00O POPPO eoos. =
Enterprise: standard sFlow (0)

(OO

ceee sese eees o . 0000 0000 0010 =
Format: Ethernet interface counters (2)

Flow data length (byte): 52

Alignment Errors: ©

FCS Errors: O

Single Collision Frames: ©

Multiple Collision Frames: ©

SQE Test Errors: ©

Deferred Transmissions: ©

Late Collisions: ©

Excessive Collisions: O

Internal Mac Transmit Errors: O

Carrier Sense Errors: 0

Frame Too Longs: ©

Internal Mac Receive Errors: 0
Symbol Errors: ©

Differences between fixed and dynamic flow protocols

Fixed and dynamic network flow protocols refer to different approaches for
capturing and analyzing network traffic flows. Here are the key differences
between the two:

e Definition of flow fields:

o Fixed network flow protocols: Define a fixed set of fields for each
flow, including source and destination IP addresses, ports, protocol,
and so on.

o Dynamic network flow protocols: Allow for the flexible definition
of flow fields based on the specific needs or characteristics of the
network traffic.

e Flexibility in flow field definitions:

o Fixed network flow protocols: Have predefined and static flow
field definitions, limiting the ability to customize or modify the
fields being collected.

o Dynamic network flow protocols: Enable dynamic creation and
modification of flow field definitions, allowing for a tailored
approach to capture specific attributes and metadata about network
traffic.

e Template-based vs. schema less approach:

o Fixed network flow protocols: Typically use a template-based
approach for defining flow records, with a specific format and
structure that remains constant.

o Dynamic network flow protocols: Often adopt a schema less or
semi-structured approach, allowing for variable-length encoding
and more adaptable data representation.

e Overhead and efficiency:

o Fixed network flow protocols: May have a higher overhead due to

the fixed structure and potential inclusion of unnecessary fields for
certain use cases.

o Dynamic network flow protocols: Tend to be more efficient in
terms of overhead since they allow for more selective and targeted
capture of flow information.

¢ FEase of modification and evolution:

o Fixed network flow protocols: Changes or additions to flow fields
require updates to the protocol specifications and potentially
widespread device/software updates.

o Dynamic network flow protocols: Allow for easier modification
and evolution of flow field definitions without requiring changes to
the underlying protocol specifications.

e Suitability for diverse use cases:

o Fixed network flow protocols: May be well-suited for standard
use cases where a predefined set of flow attributes suffices.

o Dynamic network flow protocols: Better suited for diverse use
cases where specific flow attributes need to be captured based on
the requirements of the monitoring application or analysis.

Both fixed and dynamic network flow protocols have their own set of
advantages and disadvantages based on their design and use cases. Here is a
comparison of the advantages and disadvantages of using fixed and
dynamic network flow protocols.

The advantages of fixed network flow protocols are:

e Simplicity and standardization: Fixed network flow protocols have a
standardized structure and well-defined flow fields, making them easier
to implement and interpret.

e Predictability: The fixed structure ensures that the format and order of
flow fields are predictable, simplifying parsing and analysis.

e Interoperability: Due to their standardized nature, fixed network flow
protocols facilitate interoperability across different devices and
software systems.

e Resource efficiency: Fixed network flow protocols may have lower

processing and memory requirements since the structure is fixed and
well-known.

The disadvantages of fixed network flow protocols are:

e Limited flexibility: The predefined flow field structure can be limiting
for capturing additional or customized attributes specific to certain use
cases.

* Potentially high overhead: Including unnecessary or irrelevant flow
fields in every flow record can lead to higher data volume and
increased storage and transmission overhead.

e Difficulties in evolution: Modifying or extending the flow field
definitions requires changes to the protocol specifications, potentially
hindering protocol evolution and widespread adoption of new features.

The advantages of dynamic network flow protocols are:

e Flexibility and customization: Dynamic network flow protocols allow
for the flexible definition and collection of flow fields based on
specific requirements, providing adaptability to diverse use cases.

e Efficiency and reduced overhead: Dynamic protocols can tailor the
flow field definitions to capture only relevant information, reducing
data volume and minimizing storage and transmission overhead.

e Adaptability to evolving needs: These protocols enable easy
modification and evolution of flow field definitions to accommodate
changes in network traffic patterns and monitoring requirements.

e Enhanced data relevance: By capturing only relevant attributes,

dynamic protocols can provide more focused and meaningful flow
records for analysis.

The disadvantages of dynamic network flow protocols are:

e Complexity: The dynamic and flexible nature of these protocols can
introduce complexity in implementation, parsing, and analysis due to
variable-length encoding and dynamic field definitions.

e Potential for interpretation issues: Different implementations may
define flow fields differently, leading to potential interpretation issues
or discrepancies in the captured data.

» Possible interoperability challenges: The lack of a standardized, fixed

structure may pose challenges for interoperability across diverse
network devices and software systems.

In summary, the choice between using fixed or dynamic network flow
protocols depends on the specific monitoring requirements, the level of
flexibility needed, and considerations related to standardization, resource
efficiency, and future adaptability. Fixed protocols offer simplicity and
standardization, while dynamic protocols provide flexibility and
customization to better meet evolving monitoring needs. The decision
should be based on a careful evaluation of these advantages and
disadvantages in the context of the intended use cases.

Now let us understand the advantages and disadvantages of sampled and
unsampled network flow protocols.

Sampled flow protocols capture and analyse a subset or sample of network
traffic rather than processing every packet. This subset is determined by a
defined sampling rate. Its advantages are:

e Reduced overhead: Sampling reduces the amount of data to be
processed and transmitted, lowering resource overhead on network
devices and collectors.

e Scalability: Suitable for high-speed networks where processing every
packet is resource-intensive, enabling flow monitoring at scale.

e Resource efficiency: Reduces CPU and memory usage on network
devices, making it feasible to monitor high-speed links without
affecting performance.

The disadvantages are:

e Loss of granularity: Sampling sacrifices detail and granularity,
potentially missing important information about specific flows and
patterns.

e Less accurate analysis: Analysis based on sampled data may not

accurately represent the entire network behaviour, limiting the
precision of certain analytical results.

Unsampled flow protocols analyse every packet in the network, generating
flow records for each individual packet or flow. The advantages are:

e Detailed insight: Provides a comprehensive and accurate view of
network traffic, offering detailed information about every flow.

e Accurate analysis: Offers precise analysis and understanding of
network behavior, aiding in anomaly detection, troubleshooting, and
security monitoring.

e Granular data: Enables monitoring of individual flows, which is vital
for specific use cases such as application performance monitoring.

The disadvantages are:

* Resource intensive: Processing every packet consumes significant
CPU and memory resources on network devices and collectors,
limiting scalability and efficiency.

e Increased overhead: Generates a large volume of flow records,
leading to higher bandwidth consumption for exporting flow data to
collectors.

Let us now compare both:
e Accuracy and granularity:
o Sampled: Provides a less granular view, potentially missing fine-
grained details.
o Unsampled: Offers a detailed and accurate view of network traffic.
¢ Resource utilization:
o Sampled: Reduces resource overhead and is more scalable for
high-speed networks.
o Unsampled: Demands higher resource utilization, limiting
scalability.
o Use cases:
o Sampled: Suited for high-speed networks, where monitoring every
packet is impractical due to resource constraints.
o Unsampled: Ideal when precise and detailed analysis of network
behaviour is necessary, even with resource-intensive processing.

¢ Trade-off:

o The choice between sampled and unsampled flow protocols
involves a trade-off between resource efficiency and data
accuracy/granularity.

In summary, sampled flow protocols are efficient for resource-constrained
high-speed networks, providing a balance between resource utilization and
visibility. Unsampled flow protocols offer detailed and accurate insights at
the cost of higher resource usage, making them suitable for in-depth
analysis and troubleshooting in environments where resource limitations are
less critical.

Conclusion

Although this looks like a mess, it is easier than you think. Normally, if you
do not make use of [Pv6 and are not planning to use it, there is nothing bad
in using NetFlow v5 from your routers/firewalls and so on. You do not have
so many choices from your switches other than sFlow if they support it,
although there are also other solutions. However, if you are planning for the
future, definitely go for IPFIX . It could seem complex, but it is not. The
choice between sampled and unsampled is not very difficult; sometimes it is
forced by implementations of vendors (some vendors provide only sampled
protocols), and sometimes you must analyze 800Gbit/s network trunks and
going sampled is the only way. However, if you do not have to struggle
with this, go unsampled! As usual, you need to find the best fit for your use
case, and it must match your requirements without struggling with the
devices to avoid possible disruptions. The sense of the Wireshark outputs is
to let you understand both the complexity of the exporting process, and the
decoding process in order to let you make better choices.

In the next chapter, we will discuss network topologies and physical/logical
implementation differences, and this will give you further hints to better
understand which parts of the network make more sense to monitor and in
which way.

CHAPTER 3
Network Topologies

Introduction

This chapter will discuss the different types of networks, logical and
physical network topologies and cloud infrastructures. We will dive from
simple Local Area Networks (LANs) to more complex Virtual Private
Cloud (VPC) and Software-Defined Networking (SDNs), which are
becoming increasingly common nowadays. It is important to understand the
different logical and physical designs to understand better how and where it
makes sense to improve network visibility. Moreover, a rational design gives
more understanding of how the data flow inside the network should happen
and the basis for the physical network design, keeping in mind all
requirements regarding throughput, sizing, and redundancy.

Structure

In this chapter, we will discuss the following topics:
e Computer network
e Logical and physical design
e Main components of a computer network
e Making cloud providers networks
e VPC
e Placing network probes

Objectives

By the end of this chapter, the reader will have learned basic concepts of
networking, differences between physical and logical designs, terms and
acronyms commonly used in the industry, and an overview of what these
technologies do. This is needed to better understand how to monitor a
complex network successfully by understanding possible blind points.

Computer network

A computer network is a set of interconnected computers and devices that
communicate with each other to share resources, information, and services.
For the newcomers of networking, without adding the boredom of standards
definition, the OSI model defines seven layers of networking, with Layer 2
(data link) handling MAC addressing and Layer 3 (network) managing IP
routing. Networks can vary in size and complexity, ranging from small local
networks within a home or office, to large global networks such as the
Internet. Here are some key components and characteristics of computer
networks:

e Nodes: Nodes are the individual devices connected to the network,
including computers, servers, printers, routers, switches, and other
devices capable of sending or receiving data.

e Links and connections: Links represent the physical or logical
connections between nodes. Physical connections can include wired (for
example, Ethernet cables) or wireless (such as, Wi-Fi) links. Logical
connections are established through network protocols and addresses.

e Topologies: Network topologies define the physical or logical layout of
nodes and links in a network. Common topologies include star, bus,
ring, and mesh. The choice of topology affects factors such as
scalability, fault tolerance, and ease of management.

e Networking devices: Devices that facilitate communication and data
transfer within a network include routers, switches, hubs, access points,
and gateways (routers, firewalls, and so on). These devices play specific
roles in directing traffic, managing connections, and providing access to
other networks.

e Protocols: Networking protocols define the rules and conventions for
communication between devices on a network. TCP/IP is a fundamental
protocol suite widely used in computer networks, including the Internet.
Nowadays, TCP/IP networks are the de facto standard.

e Addressing: Devices on a network are assigned unique addresses, such
as IP addresses, to identify and communicate with each other.
Addressing ensures that data 1s routed to the correct destination.

e LANs and WANs: LANs connect devices within a limited geographic
area, like a home, office, or campus. Wide area networks (WANs) span
larger distances, connecting LANSs across cities, countries, or continents.

e Security measures: Network security is crucial to protect against
unauthorized access, data breaches, and other security threats. Security
measures include firewalls, encryption, authentication, and intrusion
detection systems.

e Scalability: Network scalability refers to the ability of a network to
accommodate growth and additional devices. Scalable networks can
expand to meet the changing needs of users and organizations.

e Bandwidth and data transmission: Bandwidth refers to the capacity of
a network to transmit data. High-bandwidth networks can handle larger
amounts of data, leading to faster and more efficient communication.

e Network management: Network management involves tasks such as
monitoring network performance, configuring devices, troubleshooting
issues, and ensuring the overall reliability of the network.

Computer networks are essential for facilitating communication,
collaboration, and resource sharing in modern environments. They form the
backbone of various applications, services, and technologies that drive the
digital interconnected world, becoming a need for any company competing
on whatever market.

Logical and physical design

Understanding the logical and physical designs of a network infrastructure is
a very important piece of information that helps designers, security
engineers, and analysts do their jobs. As a simple example, a logical design
might specify three VLANs for departments; physically, this could mean

configuring a switch with VLAN tags and connecting it to a router.

A network infrastructure could be as easy as a single switch with
workstations and a router/firewall for the most straightforward designs. On
the other hand, it could also have dozens of racks with redundant 100Gb
switch per rack, multiple spanning trees, hundreds of VLANs, VXLANSs to
transport L2 VLANs over routing devices, with logical and physical
firewalls separating different layers. Trying to converge physical and logical
designs would be impractical and messy, so it is an excellent idea to keep
them separate for both readability and flow understanding.

Main components of a computer network

The main components in terms of devices in a network infrastructure are:
e Layer 2: Hubs
e Layer 2: Switches
e Layer 2: Access Points
e Layer 3: Routers/Firewalls

Network hubs were used until the end of the ‘90s to interconnect at Layer 2
servers, workstations and clients, creating LANs. They are Layer 2 devices,
and, despite being extremely easy to deploy, they had some big issues such
as:

e Network speeds were limited to a minimum of 10Mbps and maximum
100Mbps, but due to their way of working, easily saturated.

e The working mechanism of a hub is that all ports get all the traffic and
lots of systems sending data simultaneously created collisions.
Therefore, it was necessary to retransmit data often.

e A security issue is that if all ports get all the traffic, a workstation can
also get traffic that was sent to a server and try to do MITM or
eavesdrop.

Because of these major issues, network hubs were replaced by network
switches. A network switch is a fundamental networking device used to
connect multiple devices within a LAN and facilitate communication
between them. Unlike a hub, which simply broadcasts data to all connected
devices, a switch is more intelligent. It makes data forwarding decisions

based on the destination MAC addresses of the devices connected to it. Here
are the key features and functions of a network switch:

Port connectivity: A network switch typically has multiple ports
(Ethernet ports) to connect devices such as computers, printers, servers,
and other networking equipment. Ports can range from a few to several
dozen, depending on the switch's capacity.

Switching fabric: The switching fabric is the internal architecture of the
switch that enables it to forward data between connected devices.
Modern switches use high-speed switching fabrics to handle data traffic
efficiently.

MAC address learning: Switches learn and store the MAC addresses
of devices connected to their ports. This information is used to build a
MAC address table, allowing the switch to make forwarding decisions
based on MAC addresses.

Forwarding and filtering: When a device sends data to another device
within the same network, the switch uses its MAC address table to
determine the appropriate port for forwarding the data. This process
reduces unnecessary network traffic by directing data only to the
intended recipient.

Broadcast and multicast handling: Unlike hubs, switches do not
blindly broadcast data to all connected devices. Instead, they selectively
forward data to the specific port where the target device is located. This
reduces network congestion and improves efficiency.

Collision domain separation: Switches create individual collision
domains for each port, reducing the likelihood of data collisions that can
occur in shared media environments. This enhances the overall
performance of the network.

VLAN support: Many switches support Virtual LANs (VLANS),
allowing network administrators to segment a physical network into
multiple logical networks. VLANs help enhance network security and
management. Think of it as a switch partitioning method.

Power over Ethernet: Some switches are equipped with Power over
Ethernet (PoE) capabilities, providing electrical power to connected
devices such as IP cameras, VoIP phones, and wireless access points
through the Ethernet cable itself.

* QoS: QoS features in switches enable the prioritization of certain types
of network traffic. This ensures that critical applications, such as voice
and video, receive higher priority for bandwidth.

e Managed vs. unmanaged switches: Unmanaged switches are plug-
and-play devices that operate without user configuration. Managed
switches offer additional features such as VLAN support, QoS
configuration, and remote management capabilities.

e Management interfaces: Managed switches typically have web-based
interfaces or command-line interfaces for configuration and
management. This allows network administrators to customize settings
and monitor switch performance.

e Redundancy and link aggregation: Some switches support
redundancy features, allowing for failovers, in case of a hardware or
link failure. Link aggregation enables the grouping of multiple physical
links to increase bandwidth and provide redundancy.

Network switches are foundational to local area networks, providing the
essential connectivity and intelligence needed for efficient and secure data
transmission within a network. They come in various sizes and
configurations to accommodate the specific requirements of different
network environments. Most switches are Layer 2 devices, although some
models can be configured to allow Inter-VLAN routing or do Open
Shortest Path First (OSPF) or even Border Gateway Protocol (BGP)
routing, but this blurs the line with dedicated Layer 3 routers. It is a good
practice to separate Layer 2 and Layer 3 devices and let them perform the
tasks they were designed for. Mixing functionalities, although in some cases
could be allowed, can create difficult-to-understand topologies, single points
of failure, and further problems when troubleshooting

An Access Point (AP) is a networking device that allows Wi-Fi-enabled
devices to connect to a wired network using Wi-Fi. It acts as a bridge
between wired and wireless networks, facilitating wireless communication
between devices and the existing wired infrastructure. Here is a brief
description of an access point:

e Function: The primary function of an access point is to provide wireless

connectivity to devices within its coverage area. It serves as a central
communication hub for Wi-Fi-enabled devices, such as laptops,

smartphones, tablets, and other wireless clients.

Connection to the network: Access points are typically connected to a
wired network, often through an Ethernet cable. This connection allows
them to access resources on the wired network and extend network
connectivity to wireless devices.

Wireless standards: Access points adhere to wireless standards, such as
IEEE 802.11, which define the protocols for wireless communication.
Common standards include 802.11a, 802.11b, 802.11g, 802.11n,
802.11ac, and 802.11ax (Wi-Fi 6).

Service set identifier: Access points broadcast a service set identifier
(SSID), which is a unique name that identifies the wireless network.
Wi-Fi-enabled devices use the SSID to identify and connect to the
desired network.

Security features: Access points incorporate security features to protect
wireless communication. Common security protocols include Wired
Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA), and
WPA2/WPA3, which provide encryption and authentication.

Coverage area: The coverage area of an access point is determined by
factors such as its transmit power, antenna design, and environmental
conditions. Multiple access points may be deployed to create an
overlapping network for seamless coverage in larger areas.

Roaming support: Access points support roaming, allowing devices to
seamlessly switch from one access point to another as they move within
the coverage area. This ensures uninterrupted connectivity for mobile
devices.

Management and configuration: Access points are managed and
configured through web-based interfaces or centralized network
management systems. Network administrators use these interfaces to set
security parameters, monitor performance, and manage access policies.

Mesh networking: In some scenarios, access points support mesh
networking, allowing them to wirelessly connect to each other. This can
be useful in extending coverage to areas where running Ethernet cables
1s impractical.

Integration with other network devices: Access points often work in

conjunction with routers, switches, and other networking devices to
form a comprehensive network infrastructure. They play a crucial role
in providing connectivity to devices in both home and enterprise
environments.

Access points are integral components of modern wireless networks,
enabling the proliferation of Wi-Fi connectivity in homes, offices, public
spaces, and various other environments. They play a vital role in providing
wireless access to the Internet and local network resources. Depending on
their configuration, they could be both Layer 2 or Layer 3 devices.

Moving to Layer 3 devices, we have routers and firewalls (and often, they
converge in a single physical or virtual device). A network router is a
fundamental device in computer networking that connects different networks
and directs data traffic between them. It operates at the OSI model's network
layer (Layer 3) and is a key component in both home and enterprise
networking environments. Here are the key features and functions of a
network router:

e Connectivity between networks: Routers facilitate communication
between different networks. This could involve connecting a LAN to the
Internet or linking multiple LANs within an enterprise.

e Routing: The core function of a router is to decide where to send data
packets based on network addresses. It uses routing tables and
algorithms to determine the most efficient path for data to reach its
destination.

e IP addressing: Routers use IP addresses to identify devices on a
network. They assign and manage IP addresses for devices within their
local network and enable communication between devices on different
networks.

e NAT: Routers often implement NAT to allow multiple devices within a
local network to share a single public IP address. NAT helps conserve
the limited pool of public IP addresses and adds a layer of security by
hiding internal network details.

e Firewall functionality: Many routers include firewall capabilities to
control incoming and outgoing network traffic. This helps protect the
network from unauthorized access and potential security threats.

e Wireless routing: Wireless routers incorporate Wi-Fi technology,

allowing devices to connect to the network wirelessly. They typically
have integrated wireless access points to provide Wi-Fi connectivity.

e LAN and WAN ports: Routers have multiple ports to connect to local
devices within a LAN, and often at least one port for connecting to a
WAN, such as the Internet. WAN ports are usually labeled for
connections to cable or DSL modems.

e Dynamic Host Configuration Protocol: Routers can act as Dynamic
Host Configuration Protocol (DHCP) servers, automatically assigning
IP addresses to devices within the local network. This simplifies the
process of connecting new devices to the network.

e QoS: Some routers support QoS features, allowing for prioritization of
certain types of traffic. This is particularly useful in ensuring optimal
performance for time-sensitive applications like VoIP or video
streaming.

e VLANSs: Enterprise-grade routers may support VLANSs, allowing the
segmentation of a physical network into multiple virtual networks. This
enhances network security and management.

e Management interfaces: Routers are configured and managed through
web-based interfaces or command-line interfaces. Users can access
these interfaces to set up routing tables, configure security settings, and
manage other features.

e Logging and monitoring: Routers often have logging and monitoring
capabilities to track network activity, identify potential issues, and
generate reports on network performance.

Network routers are critical in directing data traffic across networks,
ensuring efficient and secure communication. They are a cornerstone of
modern networking infrastructure, enabling connectivity in homes,
businesses, and the Internet.

In the following Figure 3.1, we can see one of the simplest network designs,
although very widely spread in small companies:

Physical Design Logical Design

Cabled

Lzer workstations

Wifi Layer 2

1Gbit cable Access Paint LAN 192.168.1.0/24 - DHCP
—~ "
Layer 2 Switch gy 3] ' I GW182.168.1.0/24
" ¥, P T
Y .
'. 1 Connection : n Public TP: Dynamic
1 ' !
16Ghit cable 1
) l 2 e & '« B Internet
NAT Bsiag [nternet Routar \ B B
Smartphene
WAN Connection Wifi -
Cannaction -

Internet

Figure 3.1: Simple physical and logical design

LAN

A LAN is a network of interconnected computers and devices within a
limited geographic area, such as a home, office building, or campus. LANs
are designed to facilitate communication and resource sharing among

connected devices. Here are the key characteristics and components of a
LAN:

e Geographical scope: LANs cover a relatively small geographic area,
typically confined to a single building or a group of nearby buildings.
They are ideal for connecting devices within close proximity.

e Topologies: Common LAN topologies include star, bus, ring, and mesh.
The choice of topology depends on factors such as cost, scalability, and
fault tolerance.

e Networking devices: Devices within a LAN are connected by
networking hardware, including switches, routers, access points, and
hubs. Switches are particularly common in modern LANs for efficient
data forwarding.

e Computers and end devices: Computers, laptops, workstations, and
servers are the primary end devices connected to a LAN. These devices
communicate with each other and share resources, such as files and
printers.

Network Interface Cards: Each device on a LAN is equipped with a
Network Interface Card (NIC) that enables it to connect to the
network. NICs can be integrated into the device's motherboard or added
as separate hardware.

Ethernet cabling: LANs commonly use Ethernet cables (Cat5e, Cat6,
and so on) for wired connections. Ethernet is a widely adopted standard
for local area networking and provides reliable, high-speed data
transmission.

Wireless LANs: Wireless LANs utilize Wi-Fi technology, allowing
devices to connect to the network without needing physical cables.
WLANSs are especially prevalent in modern environments, providing
flexibility and mobility.

Networking protocols: LANs use networking protocols such as TCP/IP
to enable communication between devices. TCP/IP is the foundation of
the Internet and is widely used in LANSs.

IP addressing: Devices on a LAN are assigned IP addresses to identify
and communicate with each other. IP addresses can be dynamically
assigned using DHCP or configured statically.

Subnetting: Larger LANs may use subnetting to divide the network
into smaller logical segments. Subnetting helps manage network traffic,
enhance security, and simplify network administration.

File and printer sharing: LANs enable resource sharing, including
sharing files and printers among connected devices. This facilitates
collaboration and enhances productivity in a local environment.

Security measures: LANs implement security measures to protect
against unauthorized access and data breaches. This can include
firewalls, intrusion detection systems, and encryption protocols.

Gateway: A gateway serves as an entry and exit point for data entering
or leaving the LAN. It provides connectivity to other networks, such as
the Internet or other LANS.

Switching and broadcasting: Switches are used to manage data traffic
within a LAN, directing data only to the specific device for which it is
intended. Broadcasting is the process of sending data to all devices on
the network.

e LAN management: LANs are typically managed using network
management tools and protocols. These tools help monitor network
performance, troubleshoot issues, and configure network devices.

LANs are crucial in local communication, resource sharing, and
collaboration. They are fundamental to businesses, educational institutions,
and homes, providing the foundation for local networking and connectivity.
The simplest LAN can be created by using a hub or a simple switch and can
grow to cover an entire building with redundancy using multiple switches,
fiber channel connections, and spanning-tree protocol (to protect from
loops). However, it 1s always a Layer 2 infrastructure local to a place
(although using protocols such as VXLAN, it could be transported over L3
devices, even on the Internet).

WAN

A WAN is a type of computer network that spans a large geographical area,
connecting multiple smaller networks or LANs. WANs are designed to
facilitate communication and data exchange between devices and systems
over long distances, often using various telecommunication technologies.
Here are the key characteristics and components of a WAN:

e Geographical scope: WANs cover a broad geographical area, which
can range from a city to a country or even span the entire globe. They
enable connectivity between widely dispersed locations.

e Network infrastructure: WANSs utilize a combination of public and
private networking infrastructure. This can include leased lines, satellite
links, fiber-optic cables, and other telecommunications technologies.

e Connectivity between LANs: The primary purpose of a WAN is to
connect and interconnect LANs located in different geographic
locations. This enables organizations to establish a unified network
infrastructure despite physical distance.

e Internet connectivity: WANs often leverage the Internet as a means of
connecting remote locations. This can involve the use of virtual private
networks (VPNs) to create secure communication channels over the
public Internet.

e High data transfer rates: WANs are designed to support high data
transfer rates, although the actual speed may vary depending on the

specific technologies used and the distance between connected
locations.

e Point-to-point and multipoint connections: WANs support both point-
to-point connections, where two locations are directly linked, as well as
multipoint connections, where multiple locations are interconnected
through a central hub or a mesh network.

e WAN devices: Routers and switches play a crucial role in WANSs,
facilitating the routing and forwarding of data between different
networks. Modems, bridges, and other networking devices may also be
employed.

e Public and private connectivity: WANs can include both public
connections, such as the Internet, and private connections, such as
leased lines or dedicated circuits. The choice depends on factors such as
security requirements, bandwidth needs, and cost considerations.

e Reliability and redundancy: WANSs often incorporate redundancy
measures to ensure reliability. Multiple connections, backup routes, and
failover mechanisms are employed to minimize downtime in case of a
network failure.

e Protocols: WANs use various networking protocols to ensure
compatibility and communication between different devices and
networks. Common protocols include TCP/IP, Multiprotocol Label
Switching (MPLS), and others.

e QoS: QoS features in WANSs enable prioritization of specific types of
traffic, ensuring that critical applications receive the necessary
bandwidth and performance.

e Managed services: Many organizations opt for managed WAN services
provided by telecommunications carriers. These services can include
dedicated lines, MPLS connections, and other solutions tailored to
specific business needs.

WANSs are essential for connecting remote offices, data centers, and branch
locations, enabling seamless communication and data sharing across diverse
geographic locations. One of the most used (and still in use) technologies for
WANSs is the MPLS, that created a sort of virtual VPN between different
branches of the same company using a Telco provided and managed VPN
based on packet labelling. MPLS labels packets for faster routing across

WANS, often used in provider networks for reliability.

Just think how important the most famous WAN (the Internet) was during
the COVID-19 period; it allowed businesses and companies to keep working
even with such a pandemic situation!

VXLAN

Virtual Extensible LAN (VXLAN), is a network virtualization technology
that extends Layer 2 (L2) network segments over an existing Layer 3 (L3)
infrastructure. Basically, VXLAN wraps Layer 2 frames in UDP packets,
like putting a letter in an envelope, sent over Layer 3 networks. VXLAN is
designed to address the scalability limitations of traditional VLANs by
allowing the creation of large-scale, multi-tenant networks in virtualized and
cloud environments. Here is a description of VXLAN and its key features:

e Overlay network: VXLAN creates an overlay network on top of an
existing IP network, typically a Layer 3 infrastructure. This overlay
allows for the creation of logical Layer 2 networks that can span across
data centres, making it suitable for cloud and virtualized environments.

e Encapsulation: VXLAN encapsulates Layer 2 frames within UDP
packets. This encapsulation allows these frames to traverse Layer 3
networks without relying on a specific underlying physical
infrastructure.

e Segmentation and tenant isolation: VXLAN uses a 24-bit VXLAN
Network Identifier (VNI) to provide segmentation and isolation. Each
VNI represents a unique virtual network, allowing multiple tenants or
applications to share the same physical infrastructure while maintaining
logical separation.

e Support for large-scale environments: VXLAN addresses the
limitations of traditional VLANSs, which are restricted to 4,096 unique
VLAN IDs. With a 24-bit VNI, VXLAN supports over 16 million
unique network identifiers, enabling the creation of large-scale virtual
networks.

e Multicast or unicast transport: VXLAN can use either multicast or
unicast as the transport mechanism for encapsulated packets. Multicast
1s often used for broadcast and unknown unicast traffic, while unicast
can be more scalable and more straightforward to implement in some

environments.

e Compatibility with existing networks: VXLAN operates
independently of the underlying physical network and can be deployed
on existing [P networks. This allows organizations to introduce VXLAN
gradually without requiring a complete network overhaul.

e VXLAN Tunnel Endpoint: VXLAN Tunnel Endpoint (VTEP) are
devices that participate in VXLAN and serve as endpoints for VXLAN
tunnels. VTEPs encapsulate and decapsulate VXLAN packets, ensuring
the logical Layer 2 frames reach their intended destination across the
Layer 3 network.

e Integration with network virtualization platforms: VXLAN is often
used with network virtualization platforms and SDN solutions. It plays a
crucial role in creating scalable and agile virtual network environments.

e Use cases: VXLAN is commonly employed in data centres and cloud
environments where there 1s a need for scalable and isolated network
segments. It is particularly beneficial for supporting virtual machine
mobility, allowing VMs to move across physical hosts and data centres
while maintaining network connectivity.

e IETF standardization: VXLAN 1s standardized by the Internet
Engineering Task Force (IETF) in RFC 7348. This standardization
ensures interoperability and facilitates the widespread adoption of
VXLAN across different networking equipment and software.

VXLAN is a widely adopted technology for creating scalable, flexible, and
isolated network overlays in modern data centers and cloud environments.
Its ability to address the limitations of traditional VLANs makes it a key
component in building agile and dynamic network architectures.

VPN

A VPN is a technology that allows for secure and encrypted communication
over an untrusted network, such as the Internet. It creates a private and
secure connection between the user's device and a remote server, enabling
the user to access the Internet or a private network as if they were directly
connected to the server. Here are the key components and characteristics of a
VPN:

Secure connection: The primary purpose of a VPN is to create a secure
and encrypted connection, often referred to as a tunnel, between the
user's device (client) and a VPN server. This encryption helps protect
data from interception and unauthorized access.

Encryption protocols: VPNs use various encryption protocols to secure
data during transmission. Standard protocols include OpenVPN,

L2TP/IPsec, IKEv2/IPsec, and SSTP. The protocol choice depends on
security requirements, compatibility, and performance.

Authentication: VPNs use authentication mechanisms to verify the
identity of users and ensure that only authorized individuals can
establish a connection. This can involve username and password
authentication, digital certificates, or other methods.

Remote access and site-to-site VPNs: VPNs can be classified into two
main types:

o Remote access VPN: Allows individual users to connect to a private
network over the Internet remotely.

o Site-to-site VPN: Connects entire networks or multiple branch
offices, creating a secure connection between different locations.

Tunneling protocols: VPNs employ tunneling protocols to encapsulate
and protect data as it travels over the Internet. These protocols establish
a secure connection and define how data is encapsulated, transmitted,
and decrypted at the destination.

Access to restricted resources: VPNs enable users to access resources
on a private network or the Internet as if they were physically present at
the location of the VPN server. This is particularly useful for remote
workers who need access to company resources securely.

Bypassing geo-restrictions: VPNs can bypass geographical restrictions
imposed by content providers or governments. By connecting to a server
in a different location, users can appear to be accessing the Internet from
that location.

Privacy and anonymity: VPNs enhance user privacy by masking their
IP address and encrypting their Internet traffic. This makes it more
challenging for third parties, such as hackers or advertisers, to monitor
online activities.

e Public Wi-Fi security: VPNs are commonly used to secure Internet
connections when using public Wi-Fi networks. By encrypting data,
VPNs protect users from potential threats and eavesdrop on unsecured
public networks.

e Client software and configurations: VPNs typically require client
software on the user's device, which establishes and manages the VPN
connection. Users may also need to configure connection settings, such
as the VPN server address and authentication details.

e Split tunneling: Some VPNs offer split tunneling, allowing users to
direct only specific traffic through the VPN while allowing other traffic
to access the Internet directly. This can optimize bandwidth usage.

e Corporate VPNs: Many organizations implement corporate VPNs to
provide secure remote access for employees. Corporate VPNs often
include additional security measures, such as multi-factor authentication
and centralized management.

VPNs are versatile tools that serve multiple purposes, from ensuring secure
remote access to protecting user privacy and enabling access to geo-
restricted content. They have become increasingly prevalent in today's
interconnected and privacy-conscious digital environment. Again, just think
how important VPN technology was during COVID-19; it allowed
businesses and companies to keep on working!

DMZ/frontend/backend network

A Demilitarized Zone (DMZ) in the context of computer networks is a
special network segment that acts as a buffer zone between an organization's
internal network and an external, untrusted network, usually the Internet.
The primary purpose of a DMZ is to provide an additional layer of security
by isolating certain services or systems from the internal network. Usually, it
is a separate Layer 2 LAN dedicated to this purpose, connected to the rest of
the network infrastructure by a firewall interface.

The key characteristics of a DMZ include:

e Isolation: The DMZ is a segregated network that separates external-
facing services from the internal network. This isolation helps contain
and mitigate the impact of potential security breaches.

e Security perimeter: The DMZ serves as a security perimeter where
services that need to be accessible from the Internet are placed.
Examples include web servers, email servers, and public-facing
application servers.

e Firewall protection: Firewalls are deployed at the boundaries of the
DMZ to control and monitor traffic between the external network, the
DMZ, and the internal network. Access control rules are typically
configured to restrict unauthorized access.

e Multi-tiered architecture: In a typical DMZ setup, there might be
multiple layers of security, often referred to as a multi-tiered
architecture. For example, a DMZ might have a frontend web server
tier, an application server tier, and a backend database tier, each with its
own level of security.

e Proxy servers and reverse proxies: Proxy servers and reverse proxies
are commonly used in the DMZ to enhance security. Proxies can filter
and inspect incoming traffic before allowing it to reach internal services,
adding an extra layer of protection.

e Intrusion detection and prevention systems: Security devices, such as
intrusion detection and prevention systems (IDPS), may be deployed
within the DMZ to monitor and analyze network traffic for potential
security threats.

e Logging and monitoring: The DMZ is closely monitored, and logs are
often generated to track and analyze activities within the zone. This
helps identify and respond to security incidents.

The concept of a DMZ is a fundamental part of network security best
practices, helping organizations protect their internal assets from external
threats. By carefully controlling and monitoring traffic in and out of the
DMZ, organizations can balance making certain services accessible to the
outside world and maintaining the security of their internal network.

In computer network infrastructure, the terms backend and frontend are
often used to describe different layers or components of the overall
architecture. Let us now explore each.

Frontend network infrastructure

Its features are as follows:

e The frontend network infrastructure refers to the network components
and configurations that directly interact with users and handle their
requests.

e Web servers: Frontend networks commonly involve web servers
hosting user interface components, web pages, and static content. These
servers respond to user requests initiated from web browsers.

e Load balancers: Load balancers distribute incoming network traffic
across multiple web servers to ensure an even load distribution, improve
responsiveness, and enhance fault tolerance.

e Content delivery networks: CDN may be part of the frontend
infrastructure to optimize the delivery of static assets (like images,
scripts, and stylesheets) by caching them at strategic locations closer to
end-users.

e Firewalls and security measures: Security is crucial for the frontend
network. Firewalls and other security measures are implemented to
protect against common web-based threats such as DDoS attacks and
unauthorized access.

Backend network infrastructure

Its features are as follows:

e The backend network infrastructure focuses on the servers and services
responsible for processing business logic, managing databases, and
handling other computational tasks.

e Application servers: Backend networks include servers that execute an
application's server-side logic. These servers process user requests,
interact with databases, and perform various computations.

e Databases: Backend infrastructure often involves databases for storing
and retrieving data. These databases could be relational (for example,

MySQL, PostgreSQL) or NoSQL (such as, MongoDB, Cassandra)
depending on the application's requirements.

e Internal communication: Communication occurs between different
backend services. This may involve protocols like HTTP/HTTPS apart
from others, message queues, or other communication methods to
ensure coordination and data exchange between various components.

e Authentication and authorization services: Backend networks often
include services responsible for user authentication and authorization,
ensuring that only authorized users can access specific resources.

e Security measures: Similar to the front end, security is a critical
consideration in the backend network. Firewalls, intrusion
detection/prevention systems, and encryption mechanisms are employed
to protect sensitive data and services.

Communication between frontend and backend

The frontend and backend components communicate over the network using
protocols such as HTTP/HTTPS. API play a crucial role in facilitating this
communication, allowing the front end to request and receive data from the
backend.

In summary, the frontend and backend network infrastructures work together
to deliver a complete and functional web application. The frontend handles
user interactions and interfaces, while the back end manages the underlying
logic, data processing, and storage. Effective communication between the
two 1s essential for a seamless and responsive user experience.

The terms DMZ and frontend network are related but refer to different
concepts within the context of network architecture. Let us now clarify the
differences between the two.

Demilitarized Zone

A DMZ is a network segment that is isolated from both an organization's
internal network and the external, untrusted network (typically the Internet).
It acts as a buffer zone, providing an additional layer of security.

Services that need to be accessible from the Internet, such as web servers,
email servers, or application servers, are placed in a DMZ. The DMZ is
designed to contain and mitigate the impact of potential security breaches by
separating these external-facing services from the internal network.

The DMZ is often protected by firewalls, intrusion detection/prevention
systems, and other security measures to control and monitor traffic between
the internal network, the DMZ, and the external network.

Frontend network

The frontend network refers to the network infrastructure directly interacting
with users and handling their requests. It includes components responsible
for presenting the user interface and managing user interactions.

In a web application context, the frontend network typically involves web
servers, load balancers, CDNs, and other components that deliver the user
interface elements to end-users' devices.

The frontend network optimizes user experience, ensures responsiveness,
and delivers static and dynamic content to users' browsers.

Key differences

The key differences between DMZ and frontend network are as follows:
e Scope and purpose

o The DMZ is a specific network segment designed to provide a
secure zone for external-facing services, protecting the internal
network from potential external threats.

o The frontend network is a broader concept encompassing the
network infrastructure responsible for handling user interactions,
delivering content, and managing the user interface. It may include
components both within and outside the DMZ.

¢ Placement of services

o In a DMZ, services like web or application servers needing external
accessibility are placed.

o The frontend network includes components responsible for
delivering the user interface, which may or may not be within the
DMZ. Depending on the architecture, the frontend components can
exist both in the DMZ and the internal network.

e Security measures
o The DMZ is heavily fortified with security measures such as

firewalls to control and monitor traffic between different zones.

o While security is also crucial in the frontend network, it may not
have the same level of isolation and security measures as a dedicated
DMZ.

In summary, a DMZ is a specific network segment designed for security
purposes, while the frontend network encompasses the broader infrastructure
responsible for user interactions and content delivery. While they may
overlap in some cases, they serve different roles in the overall network
architecture.

In the following Figure 3.2, we can see an example of both physical and
logical designs of a frontend/backend/DMZ network:

Physical Design Logical Design

Server rack with
FrontEnd, Backend and
i ‘Web Mail
DMZ Phy/Virt servers eb Mai Internet Praxy

&02.1Q VLAN Tagging E E

WLAN 10: Front End A
[[] i .
]] i

WLAN 20: Back End
[}
Vo 2 7
Lﬂ- - - ..+
Front End 192.168,1.0/24 [DMZ 192.168.3.0/24
+

WLAN 30: DMZ
LAY

4
Database r “
’ .
’ [y g
‘_’ . g* Workstations
] ’ ‘5
—————
Back End 152.168.2.0/24 Employee 192.168.4.0/24

Internet
Router
Backup Firewall

gl Spanning Tree

Multipathing

Users/Employees

Figure 3.2: A frontend/backend/DMZ network infrastructure

SDN

A SDN is an innovative approach to network management and configuration
that separates the control plane (which makes decisions about where to send
traffic) from the data plane (which actually forwards the traffic). This
separation 1is achieved using software-based controllers or APIs that

communicate with the underlying hardware infrastructure and direct traffic
on the network. Controllers like OpenDaylight and Open Network
Operating System (ONOS), as simple open-source examples, enable
centralized management and make use of OpenFlow for traffic control.

The key components and characteristics of a SDN include:
e SDN controller

o The SDN controller is the brain of the SDN architecture. It acts as a
central intelligence that decides where network traffic should be sent
based on the overall network policies and conditions.

o Controllers are typically implemented as software applications that
run on commodity hardware. They communicate with switches and
routers using standardized protocols like OpenFlow.

e Control plane and data plane separation

o In traditional networking, the control plane and data plane are tightly
integrated into network devices. SDN separates these two planes,
allowing for more flexible and centralized control over network
behavior.

o The control plane, residing in the SDN controller, makes decisions
about routing and traffic flow, while the data plane, implemented in
network devices, is responsible for forwarding packets based on
these decisions.

e OpenFlow protocol

o OpenFlow is a standardized communication protocol (but not the
only one) that enables communication between the SDN controller
and the network devices (such as switches and routers) in the data
plane.

o It allows the controller to dynamically adjust the behavior of
network devices, such as changing routing rules or updating access
control policies.

e Programmability

o SDN allows network administrators and developers to program the
behavior of the network using software. This programmability

enables the creation of custom network policies and the adaptation
of the network to changing requirements.

Dynamic network provisioning

o SDN enables dynamic provisioning of network resources. It allows
for the automatic allocation and reallocation of bandwidth,
prioritization of traffic, and adjustment of network configurations
based on application or user needs.

Centralized network management

o The centralized control provided by SDN allows for easier
management and configuration of network resources. Changes can
be made globally and applied consistently across the network,
reducing the need for device-specific configurations.

Flexibility and adaptability

o SDN architectures are highly flexible and adaptable to changing
network conditions. This makes them well-suited for dynamic and
scalable environments, such as data centers and cloud computing
platforms.

Network automation

o SDN facilitates network automation by allowing administrators to
automate repetitive tasks and configurations. Automation can
improve efficiency, reduce human errors, and accelerate the
deployment of new services.

Enhanced network visibility

o SDN provides enhanced visibility into network traffic and
performance. Network administrators can gain real-time insights and
analytics to monitor and troubleshoot network issues more
effectively. Often, SDN provides options to enable flow-data export
in some standard protocols, such as sFlow (for Layer 2 devices) or
IPFIX (for Layer 3 devices).

SDN has gained popularity for its ability to provide greater agility,
scalability, and efficiency in network management. However, in several

cases, it still lacks interoperability between different network device
vendors, so you will typically find one vendor shops deploying this type of
technology in most places. It is particularly beneficial in environments
where rapid changes, dynamic resource allocation, and centralized control
are essential, such as in cloud computing, data centers, and modern
enterprise networks.

Making cloud provider networks

The network infrastructure of a cloud provider is a complex and highly
sophisticated environment designed to deliver scalable, reliable, and secure
cloud services to users and organizations. The specifics can vary among
different cloud providers, but here are some common elements and features
of a typical cloud provider's network infrastructure:

¢ Global data centers

o Cloud providers operate multiple data centers strategically located
around the world. These data centers house the physical hardware
and infrastructure necessary for running cloud services.

o Geographical distribution allows users to deploy resources closer to
their end-users, reducing latency and improving performance.

¢ Virtualization

o Cloud providers extensively use virtualization technologies to create
virtual machines (VM) or containers from physical servers. This
allows for efficient resource utilization and dynamic scaling based
on demand.

e Networking hardware

o High-performance networking hardware, including routers,
switches, and load balancers, form the backbone of a cloud
provider's network infrastructure.

o High-speed, redundant connections between data centers and within
data centers are essential for reliable and low-latency
communication.

e Software-defined networking:

o Cloud providers often implement SDN to manage and optimize
network traffic dynamically. SDN allows for programmable and
automated network configuration, improving flexibility and
scalability.

Content delivery networks

o Cloud providers may integrate CDN to cache and deliver static
content, reducing latency and improving the performance of web
applications globally.

Edge computing

o Some cloud providers leverage edge computing, deploying resources
closer to end-users or devices. This helps reduce latency for
applications that require real-time processing like IoT or streaming.

Security measures

o Robust security measures, including firewalls, intrusion detection
and prevention systems, and encryption, are integrated into the
network infrastructure to protect against cyber threats.

o VPC or similar constructs provide customers with isolated and
secure environments within the cloud.

Load balancing

o Load balancers distribute incoming traffic across multiple servers to
ensure optimal resource utilization and improve the availability and
responsiveness of applications.

Identity and access management

o Identity and access management (IAM) systems control user
access to cloud resources. Role-based access control (RBAC)
mechanisms define permissions, ensuring that users have the
appropriate level of access based on their roles.

Monitoring and analytics

o Cloud providers implement extensive monitoring and analytics tools
to track their infrastructure's performance, availability, and security.
This includes tools for logging, real-time analytics, and alerting.

e Hybrid and multi-cloud connectivity

o Cloud providers offer services and solutions for connecting on-
premises data centers to the cloud, enabling hybrid cloud
architectures. Additionally, they may facilitate connectivity between
different cloud providers for multi-cloud deployments.

e APIs and orchestration

o Cloud providers expose API to allow users to programmatically
manage and orchestrate resources. Orchestration tools enable
automation and the creation of complex, interconnected services.

e Scalability and elasticity

o Cloud infrastructure is designed to be highly scalable and elastic,
allowing users to scale resources up or down based on demand. This
scalability is a key feature of cloud computing.

Understanding and effectively managing this complex network infrastructure
is crucial for cloud providers to deliver reliable, performant, and secure
customer services. It enables users to deploy and manage applications
without significant investment in physical infrastructure and allows for rapid
innovation and adaptation to changing business needs.

VPC

A VPC is a cloud computing infrastructure that provides a private network in
the cloud. It allows users to create and manage their own isolated virtual
networks within a public cloud environment. The concept of a VPC is often
associated with Infrastructure as a Service (IaaS) providers, such as
Amazon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP).

The features of a VPC are as follows:

e Isolation: A VPC provides isolation and separation of resources from
other users in the cloud. This isolation is achieved through network-
level segmentation, allowing users to have their own private space
within the larger cloud infrastructure.

e Customization: Users can customize the VPC to meet their specific

requirements. This includes defining IP address ranges, configuring
subnets, and setting up routing tables to control traffic flow between
different VPC components.

e Security: VPCs typically include security features such as network
access control lists (ACL), security groups, and firewalls to control and
monitor traffic. These features help users implement security policies to
protect their applications and data.

e Scalability: VPCs are designed to be scalable, allowing users to add or
remove resources as their needs change easily. This scalability is crucial
for handling varying workloads and ensuring the infrastructure can
adapt to the evolving demands.

e Connectivity: VPCs often provide options for connecting to on-
premises data centers or other cloud environments. This can be achieved
through dedicated connections (for example, Direct Connect in AWS) or
VPN connections.

e Resource management: Users can manage various cloud resources
within their VPC, including virtual machines, storage, and other
services. This allows for efficient resource allocation and utilization.

e High availability: VPCs are designed to provide high availability for
applications and services. This is often achieved by distributing
resources across multiple availability zones or regions, reducing the risk
of downtime due to hardware failures or other issues.

Typically, a VPC is split into a frontend subnet and a backend subnet,
separated by an SDN-provided firewall. Overall, a VPC offers organizations
a way to harness the benefits of cloud computing while maintaining control,
security, and customization over their network infrastructure. It is a flexible
and scalable solution that caters to the diverse needs of different businesses
and applications.

In the following Figure 3.3, we can see an example of a logical design of a
VPC. The physical design is up to the delivery infrastructure of the chosen
provider, so we cannot decide it or describe it:

Logical Design

Web Mail
El H VPC Cloud Provider

1 1
W 7 P _
L- - *- Public IP:
Front End 192.168.1.0/24 Static

Database r

1]
Back End 192.168.2.0/24

ul i‘«'rr'f}?’i
Workstations A

] L
Small Office 192.168.4.0/24

Figure 3.3: The logical design of a VPC

Placing network probes

This is where the logical and physical network designs come in handy. If you
must decide where to monitor the network, it is essential to understand the
logical and physical designs well. The logical design helps us to understand
(based on the logical data flow) where the network probe should be placed in
order to analyze the traffic, but only by viewing the physical design, we
understand how to effectively make the deployment (which switches port,
which LANs, and so on). It also depends on which type of probe we are

going to deploy.

If we must deploy an IPS solution, its best placement would ideally be
behind the inside network of a firewall, so everything reaching the firewall
could be analysed. But if we are willing to have an in-depth view of what is
happening on the whole network infrastructure by means of using flow-data
analysis, we should enable it on most devices supporting it (most flow-data
collectors can do some form of data-deduplication).

Conclusion

Understanding the network that we will analyze is the first step to
understanding how it works, its potential, caveats, and dark spots. As we
have seen in the previous chapter, Layer 3 devices can obtain better results
(in terms of network visibility). However, when it is impossible or
impractical to use a Layer 3 device, Layer 2 devices can at least provide
some helpful information.

In the following chapters, we will see how to properly configure flow-data
export from most Layer 2, Layer 3, and virtualization devices.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 4

Implementing Flow Export on
Layer 2 Devices

Introduction

As we all know, Layer 2 (data link) operates using physical network
addresses and it 1s commonly used in network switches. In typical Ethernet
networks, the physical network address is the MAC address. In this chapter,
we will examine our options for catching network flows from Layer 2
devices. Catching traffic flows at this level can give us unprecedented
network visibility and allow us to see traffic that could not even cross a
router or a firewall, giving a clearer idea of what 1s really happening in the
company’s internal network.

Structure

In this chapter, we will discuss the following topics:
e (Catching network flows on the Layer 2
e Importance of sFlow

Configuring sFlow on a Cisco SG350 switch

Configuring sFlow on an HP switch

Configuring sFlow on a Huawei switch

e Standard way to get flows from anywhere

Objectives

The chapter will guide the reader to implement flow data export on the most
widespread Layer 2 devices (switches and access points) from most vendors
on the market. It will also describe a solution to get NetFlow/IPFIX data
from a switch using port mirroring.

Catching network flows on Layer 2

As mentioned, it is beneficial to catch flows on Layer 2 devices such as
switches and access points. Tracking flows at this level can allow us to
detect actual traffic patterns, and security violations. We can get real traffic
patterns since we can see what happens on devices on the same Layer 2,
even if it is spread on different devices by means of 802.1Q trunking, and it
allows us to identify security violations that would otherwise go unnoticed,
probably for months. Think of something like this: someone goes into the
data centre (or in an office) and connects a device like a Raspberry Pi with a
cellular 4G modem shield (or any other unauthorized device) and Kali
Linux for Raspberry. They keep it hidden under the floating floor, under the
desktop, or in the switch closet on the floor. Or, even better, without
cabling, it is just being joined to your (hacked) wireless network and
sending data outside the 4G modem. Data exfiltration or remote
unauthorized access at its finest levels, bypassing any firewall or security
measure. How long would it take to detect it without any form of traffic
control?

Importance of sFlow

The sFlow protocol comes to the rescue in the case of Layer 2 devices.
While sFlow dominates Layer 2 flow export, some devices support
alternatives like NetFlow Lite, though these are less common. Although
sFlow is a sampled protocol, it allows us to retain visibility on the L2 part
of the network. sFlow normally uses statistical sampling (for example,
capturing 1 out of every 128 packets) to monitor traffic efficiently, reducing

device load while providing visibility into Layer 2 activity. Sampling has its
own reasons since L2 devices such as switches and access points usually
need to move speedily, with much more data than a router or a firewall; just
think about 100 Gb switches. So, in this case, sampling makes sense,
probably not giving us the exact terms of the flow (how many bytes, how
many packets and so on), but it shows us that there is actual communication
between device A from a particular source IP, source port, to (un)known
device B to a specific destination IP and destination port, using a specified
protocol.

In our previously described scenario, a bad device like the Raspberry Pi
could phone home by means of using OpenVPN via a 4G modem (where
home could be an anonymous server anywhere on the Internet) and from
there scan all local unprotected workstations sharing the precious company
data between themselves for different users (remember, we are on the
protected inside part of the network) and exfiltrate data like a champ.

Catching these flows between the unknown device and the workstations
could give to the security team a good hint about what is happening.

Nowadays, most managed Layer 2 switches implement the sFlow protocol,
although in some cases it could need a license to be enabled.

It would be impractical to report all possible configurations for all different
vendors. Still, in most cases, you probably will need to specify the
destination IPv4 address of the flow collector and the destination port for it,
probably with the desired sampling rate if the device allows it. Some
devices for some vendors could also request to specify on which network
port the sFlow protocol should be enabled. As a rule of thumb, the lower
the sampling (for example, 1/128 would mean taking 1 packet out of 128),
the higher the CPU switch usage (1/1024 would mean taking 1 packet out
of 1024). It always depends on the network load and on the specific
network area and impact. If you have a lower sampling on the core switch,
it could probably slow down the entire network. Maybe on the core, having
a higher sampling and a lower sampling on the peripheral switches is
preferable. It is up to the complexity of the physical network. Enabling
sFlow or port mirroring may increase switch CPU and bandwidth usage,
particularly in high-traffic environments; normally this increment is around
5-10% of CPU, but it is a good practice to monitor performance post-

configuration.

Configuring sFlow export on a Cisco SG350 switch

In this example, we will configure sFlow export to a collector on a Cisco
SG350. The sFlow collector will be listening to IP 10.1.30.220's address on
port 6343. Let us now go over the following steps:

1. Access the switch: Connect to the Cisco SG350 switch using SSH or a
console cable and terminal emulation software like PuTTY or
SecureCRT.

2. Enter privileged EXEC mode: Log in with appropriate credentials,
and then enter privileged EXEC mode by typing:
enable
3. Enter global configuration mode: Once in privileged EXEC mode,
enter global configuration mode:
configure terminal

4. Enable sFlow: Enable sFlow on the switch.
sflow enable
5. Set the sFlow agent IP address: Configure the IP address for the
sFlow agent. Replace X.X.X.X with the IP address of the switch:
sflow agent ip X.X.X.X
6. Set the sFlow collector: Configure the IP address and port of the

sFlow collector. Replace 10.1.30.220 with the IP address of your
collector and 6343 with the port number it listens on:

sflow collector 10.1.30.220 port 6343

7. Configure sFlow sampling rate (optional): You can optionally
configure the sFlow sampling rate. The default is usually 1-in-256
packets. To set a different rate (for example, 1-in-128 packets), use the
following command:

sflow sampling-rate 128
8. Configure sFlow polling interval (optional): You can also configure

the sFlow polling interval. The default is usually 30 seconds. To set a
different interval (for example, 60 seconds), use the following

command:
sflow polling-interval 60
9. Exit configuration mode: After configuring sFlow, exit global
configuration mode:
end
10. Save configuration: Save the configuration changes to ensure they
persist across reboots:
write memory
11. Verify configuration: Verify the sFlow configuration to ensure it is
correctly set up by using the following command. It should display the

configured parameters, including the agent IP address, collector IP
address, and sampling rate:

show sflow
12. Exit: Once you have verified the configuration, you can exit the
terminal session:
Exit

Configuring sFlow export on an HP switch

Configuring sFlow export to a collector on an HP switch involves several
steps. Always check the documentation that comes with your device model;
they have a wide spectrum of different devices and steps could be different.
The sFlow collector will be listening to IP 10.1.30.220's address on port
6343. For the configuration, follow the given steps:

1. Access the switch: First, ensure you can access the HP switch through
SSH, Telnet, or the web interface.

2. Enter configuration mode: Once logged in, enter privileged mode by
typing:
enable
Then, enter configuration mode:
configure terminal
3. Enable sFlow: Enable sFlow on the switch:
sflow enable

4. Configure sFlow sampling: Set the sampling rate. This determines
what fraction of packets will be sampled. For example, to sample 1 out
of every 512 packets:

sflow sample 512

5. Configure sFlow polling interval: Set the polling interval. This
determines how often counter samples will be sent. For example, to
poll every 30 seconds:

sflow polling-interval 30

6. Specify the sFlow collector: Define the sFlow collector's IP address
and port number. Assuming the collector's IP is 10.1.30.220 and port is
6343:

sflow collector 1 ip 10.1.30.220 udp-port 6343
7. Enable sFlow on interfaces: Enable sFlow on interfaces that you want

to monitor. You can enable it globally or on specific interfaces. For
example, to enable sFlow on all interfaces:

interface all
sflow enable

8. Verify configuration: Verify your configuration settings:
show sflow

9. Exit configuration mode and save changes: After verifying the
configuration, exit configuration mode and save the changes:
exit
write memory

Configuring sFlow export on an Huawei switch

Configuring sFlow export to a collector on a Huawei switch involves
several steps. Always check the documentation that comes with your device
model. There is a wide spectrum of different devices, and the steps could be
different. The sFlow collector will be listening to IP 10.1.30.220's address
on port 6343. Follow the given steps:

1. Access the switch: Connect to the switch using a terminal emulator or
SSH client. Log in with administrative credentials.

2. Enter system view: Switch to system view by typing:

system-view
3. Enable sFlow: Enable sFlow globally on the switch:
sflow enable
4. Configure sFlow agent: Define the sFlow agent, specifying the IP
address and port of the collector:
sflow agent ip <IP_address_of_switch>
sflow agent collector 1
<IP_address_of_collector> <port_number>
For our case, 1t would be:
sflow agent ip 10.1.30.1
sflow agent collector 1 10.1.30.220 6343
5. Configure sampling rate: Define the sampling rate. This determines
how frequently sFlow samples packets:
sflow agent sampling-rate <value>
Replace <value> with the desired sampling rate. For example:
sflow agent sampling-rate 4096
6. Configure polling interval: Define the polling interval. This
determines how often the sFlow agent sends samples to the collector:
sflow agent polling-interval <value>
Replace <value> with the desired polling interval. For example:
sflow agent polling-interval 30
7. Configure interface sampling: Enable sFlow sampling on specific
interfaces (optional):
interface <interface_type> <interface_number>
sflow enable
Replace <interface_type> and <interface_number> with the
appropriate interface type and number. For example:
interface GigabitEthernet 1/0/1
sflow enable
8. Save configuration: Save the configuration changes:
Save

9. Exit configuration mode: Exit system view and return to the user

view:
quit
10. Verify configuration: Verify that the sFlow configuration is correct:
display sflow configuration

Standard way to get flows from anywhere

While sFlow is widely supported, some scenarios require alternative
methods, such as port mirroring coupled with tools converting mirrored
traffic to network flows, especially for devices lacking native flow export.
There are softwares that can take raw traffic as input, capturing all packets
and grouping them in flows for export to a collector; one noticeable
example is softflowd (https://github.com/irino/softflowd). The raw traffic
as input can be provided to softflowd by means of a mirrored port of a
switch, like an uplink.

There is another feature on practically all managed switches that allows
traffic incoming/outgoing on a specific port(s) to be replicated on another
switch port, eventually connected to a traffic analyzer. This feature is called
port mirroring. Port mirroring, also known as Switched Port Analyzer
(SPAN) or Remote Switched Port Analyzer (RSPAN), is commonly
found in network switches, including Layer 2 switches. Port mirroring
allows the switch to copy the traffic from one or more source ports and send
it to a designated destination port for analysis, monitoring, or
troubleshooting purposes.

Here is a basic overview of how port mirroring works on Layer 2 switches:

e Source ports: These are the ports from which you want to copy the
network traffic. Source ports are typically selected based on specific
criteria, such as monitoring a particular device, VLAN, or network
segment.

e Destination port: This is the port to which the mirrored traffic 1s sent.
The destination port is connected to a monitoring device, such as a
network analyzer, packet sniffer, or intrusion detection system (IDS).

e Configuration: To enable port mirroring, you need to configure the
switch. The specific steps may vary depending on the switch model and

https://github.com/irino/softflowd

vendor. Typically, you will identify the source ports and specify the
destination port.

Types of port mirroring
There are different types of port mirroring, such as:

e Local port mirroring: In local port mirroring (SPAN), the source and
destination ports are on the same switch. We will use this for our
solution.

e Remote port mirroring: Remote port mirroring (RSPAN) allows
mirroring traffic from source ports on one switch to a destination port
on another switch, enabling remote monitoring.

Use cases
Port mirroring is helpful for various purposes, including:

e Network troubleshooting: Analyzing network traffic for issues or
anomalies.

e Security monitoring: Detecting and analyzing potential security
threats.

e Performance monitoring: Monitoring bandwidth usage and
identifying bottlenecks.

o Packet capture: Capturing packets for detailed analysis with tools like
Wireshark.

Considerations

When implementing port mirroring, consider the potential impact on switch
performance. Mirroring too much traffic can overload the switch's CPU and
impact overall network performance.

The traffic is replicated in a raw way, so there is still work to be done to get
only the flows, but there is a nice and free solution that allows us to get
NetFlow v5, NetFlow v9 or IPFIX flows from a mirrored switch port. The
solution is software that runs on UNIX platforms, that can take its input
from a network interface, analyze the traffic on it, and can export NetFlow
traffic on another one, and it is an open-source software called softflow.
Although it 1s freely available on the Internet, there are several forks, some

implementing VLAN traffic analysis, some implementing IPFIX . The most
complete and tested version can be downloaded from BPB’s GIT repository
at the URL https://github.com/bpbpublications/Mastering-Network-
Flow-Traffic-Analysis.

It can be easily run on Linux, FreeBSD, NetBSD and most widespread
UNIX systems, so preparing a small UNIX box getting traffic and exporting
flows for flow analysis is not difficult.

The typical softflowd workflow can be summarized in the following
picture:

Swinch not sFlow enabled

Uglink port o the core network

Mirrored Port replicating
the Uplink port

Server running softflowd

Metflow VENVIIPF UDP flows
exported by softfloved

Flowr Collector

Figure 4.1: Softflowd workflow
Let us see how we can perform an installation on a Debian Linux system.
Consider that probably most UNIX distributions already have the
softflowd package available in their repositories; we just want to show
how to build the most suitable version of it for our scopes.

The first thing is to obtain the software, so we will simply git clone a
copy of it from the GIT repository using the following:

https://github.com/bpbpublications/Mastering-Network-Flow-Traffic-Analysis

unixman@bld-debl1l:~$%$ git clone
https://github.com/bpbpublications/Mastering-Network-
Flow-Traffic-Analysis

Cloning into
"https://github.com/bpbpublications/Mastering-Network-
Flow-Traffic-Analysis'...

remote: Enumerating objects: 1344, done.remote:
Counting objects: 100% (46/46), done.remote:
Compressing objects: 100% (5/5), done.remote: Total
1344 (delta 41), reused 41 (delta 41), pack-reused 1298
(from 2)Receiving objects: 100% (1344/1344), 2.37 MiB |
2.83 MiB/s, done.Resolving deltas: 100% (671/671),
done.

Once cloned, you will have a softflowd in your UNIX system that will
look like:
unixman@bld-debll:~/build/prod/flower/softflowd$ 1ls

aclocal.m4 config.h.in convtime.c install-sh
Makefile NetFlow9.c softflowd.c
softflowd.sysconfig treetype.h

closefrom.c config.log convtime.h IPFIX.c
Makefile.in README softflowd.h strlcat.c

collector.pl config.status daemon.c LICENSE
mkinstalldirs softflowctl.8 softflowd.h~ strlcpy.c

common.h configure freelist.c log.c
NetFlowl.c softflowctl.c softflowd.init sys-
tree.h

config.h configure.ac freelist.h log.h
NetFlow5.c softflowd.8 softflowd.spec TODO

You will need the Berkeley Packet Filter (BPF) development libraries on
the build system. So, you will probably need to install the 1ibpcap-dev or
corresponding packages for your distribution.

Nonetheless, configuring the package is quite easy:
unixman@bld-debl1:~/build/prod/flower/softflowd$

./configure --enable-nf9-vlan

checking
checking

checking
a.out

checking
checking
checking
checking
checking

checking
needed

checking

for gcc... gcc
whether the C compiler works... yes
for C compiler default output file name...

for suffix of executables...

whether we are cross compiling... no

for suffix of object files... o

whether we are using the GNU C compiler... yes
whether gcc accepts -g... yes

for gcc option to accept ISO C89... none

for a BSD-compatible install...

/usr/bin/install -c

checking
checking

how to run the C preprocessor... gcc -E
for grep that handles long lines and -e...

/usr/bin/grep

checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking

for egrep... /usr/bin/grep -E
for ANSI C header files... yes
for sys/types.h... yes

for sys/stat.h... yes

for stdlib.h... yes

for string.h... yes

for memory.h... yes

for strings.h... yes

for inttypes.h... yes

for stdint.h... yes

for unistd.h... yes

net/bpf.h usability... no
net/bpf.h presence... no

for net/bpf.h... no

pcap.h usability... yes

checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
required
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking
checking

pcap.h presence... yes

for

pcap-bpf.h usability... yes
pcap-bpf.h presence... yes

pcap.h...

yes

for pcap-bpf.h... yes

sys/endian.h usability... no
sys/endian.h presence... no
for sys/endian.h... no
endian.h usability... yes
endian.h presence... yes

for endian.h...

for
for
for
for

for
for
for
for
for
for
for
for
for
for
for

whether htobe64 is declared...
whether htonll is declared...

yes

struct sockaddr.sa_len... no
struct ip6_ext.ip6e_nxt... yes

library containing daemon...
library containing gethostbyname...

library containing socket...

none required
none

none required

pcap_open_live in -lpcap... yes
closefrom... no

daemon...

yes

setresuid... yes

setreuid.

.. yes

setresgid... yes

setgid...
strlcpy..
strlcat..
strsep...

yes

. NO

no
yes

for u_inte4_t... yes
for int64_t... yes
for uint64_t... yes

yes
no

checking for u_int32_t... yes

checking for int32_t... yes

checking for uint32_t... yes

checking for u_intle_t... yes

checking for intl6_t... yes

checking for uintlé6_t... yes

checking for u_int8 t... yes

checking for int8_t... yes

checking for uint8 t... yes

checking size of char... 1

checking size of short int... 2

checking size of int... 4

checking size of long int... 8

checking size of long long int... 8

configure: creating ./config.status

config.status: creating Makefile

config.status: WARNING: 'Makefile.in' seems to ignore
the --datarootdir setting

config.status: creating config.h

config.status: config.h is unchanged

After that, the package is successfully configured. You can proceed with the
build of it (it is standard C source, so probably any version of the gcc
compiler should work flawlessly). You will also need the standard UNIX
make utility. Refer to the following:

unixman@bld-debl11:~/build/prod/flower/softflowd$ make

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 softflowd.o softflowd.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 log.o log.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB

-I. -c -0 NetFlowl.o NetFlowl.c

| A~~~~~~

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 NetFlow5.0 NetFlow5.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -¢c -0 NetFlow9.0 NetFlow9.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 IPFIX.o IPFIX.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 freelist.o freelist.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 convtime.o convtime.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 strlcpy.o strlcpy.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -¢c -0 strlcat.o strlcat.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -Cc -0 closefrom.o closefrom.c

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB
-I. -c -0 daemon.o daemon.c

gcc -o softflowd softflowd.o log.o NetFlowl.o
NetFlow5.0 NetFlow9.0 IPFIX.o freelist.o convtime.o
strlcpy.o strlcat.o closefrom.o daemon.o -lpcap

gcc -g -02 -DFLOW_SPLAY -DEXPIRY_RB

-I. -c -0 softflowctl.o softflowctl.c

gcc -o softflowctl softflowctl.o convtime.o strlcpy.o
strlcat.o closefrom.o daemon.o -lpcap

Despite some compiler warnings (mostly for deprecated UNIX C Library
standards), the software was built successfully. We can just run it now to
start collecting data:
unixman@bld-debll:~/build/prod/flower/softflowd$ su
root

Password:
root@bld-

debll:/home/unixman/build/prod/flower/softflowd#
./softflowd -i ensl8 -n 10.1.30.210:2056 -v 10 -T vlan

-6 -P udp

With this command line, we are instructing softflowd to analyze traffic
on physical interface named ens18 and send IPFIX (also called NetFlow
v10) to IP address 10.1.30.210 on port 2056 using the UDP protocol, and
also to track IPv6 flows. In our examples, our flow collector will run on that
IP address on the 2056 UDP port. Once flows reach the collector, tools like

SolarWinds NTA or FlOwer can analyze traffic patterns and detect
anomalies.

When the process starts, it daemonizes itself, detaching from the shell
where you started and continuing to work in the background.

You can check running it with the -d (do not daemonize) or by using the
standard UNIX ps command:

root@bld-debll:~# ps -efa

UID PID PPID C STIME TTY TIME CMD
root 1 © 0O Jane9 ? 00:00:04
/sbin/init

root 2 © 0O Jane9 ? 00:00:00
[kthreadd]

root 3 2 © Jane9 ? 00:00:00
[rcu_gp]

root 396 1 © Jane9 ? 00:00:01
/1ib/systemd/systemd-logind

root 403 1 0 Jane9 ttyl 00:00:00
/sbin/agetty -0 -p -- \u --noclear ttyl linux

root 407 1 0 Jane9 ? 00:00:00
sshd: /usr/sbin/sshd -D [listener] © of 10-100 startups
root 890 407 © 09:25 ? 00:00:00

sshd: unixman [priv]
<Linux processes omitted for readability reasons>

root 4846 4324 0 10:13 pts/o 00:00:00
./softflowd -i ens18 -n 10.1.30.210:2056 -v 10 -T vlan
-6 -P udp

root 4847 4836 ©0 10:13 pts/2 00:00:00 ps

-efa

We can also check if the flow packets are actually sent to our destination by
simply using the standard tcpdump command:

root@bld-debll:~# tcpdump -n -i ensl8 udp port 2056

tcpdump: verbose output suppressed, use -v[v]... for
full protocol decode

listening on ens18, link-type EN1OMB (Ethernet),
snapshot length 262144 bytes

10:17:30.916033 IP 10.1.20.206.2056 > 10.1.30.210.2056:
UDP, length 252

10:17:31.817753 IP 10.1.20.206.2056 > 10.1.30.210.2056:
UDP, length 216

10:17:31.818150 IP 10.1.20.206.2056 > 10.1.30.210.2056:
UDP, length 484

10:17:31.956036 IP 10.1.20.206.2056 > 10.1.30.210.2056:
UDP, length 312

10:17:32.334501 IP 10.1.20.206.2056 > 10.1.30.210.2056:
UDP, length 288

Obviously, the best practice is to configure the UNIX system to start it at
boot with a proper startup script. If you want to track more switches, you
can connect one mirrored port per switch and run several instances of the
softflowd software on each interface. In this way, you can have a single
analyzing point for different switches that send all the flows to a single (or
multiple collectors if you use the samplicator daemon, which is another
UNIX software that can replicate UDP packets to different hosts) collector
from where you can monitor all traffic on Layer 2 switches.

Conclusion

Obviously, properly configured switches with onboard sFlow v5 export
capabilities are the more practical and manageable solution for analyzing
traffic, but going the hard way with softflowd could also allow us to catch
traffic where the Layer 2 network device cannot handle it. Just think about
wireless access points connected to switches. Native sFlow on switches

offers a practical solution for most networks, while port mirroring with
softflowd provides flexibility for unsupported devices or specific use cases,
such as monitoring wireless access points.

In the next chapter, we will analyze how Layer 3 devices can be configured
to export flow data that we can use in our network analysis toolbox chain.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 5

Implementing Flow Export on
Layer 3 Devices

Introduction

In this chapter, we will examine our options for catching network flows
from Layer 3 devices. Flow tracking technology was originally born on
routers and was slowly adapted to work on most types of devices, as we
have seen on Layer 2 devices and will see on other types of platforms.
However, this is probably the most practical viewpoint for most network
traffic.

Structure

In this chapter, we will discuss the following topics:

Catching flows on Layer 3

General considerations for the example configurations

Configuring NetFlow V9 export on a Cisco 1721 router with IOS 12.1
Configuring NetFlow V9 export on a Cisco 2800 router with IOS 12.3
Configuring IPFIX export on a Cisco 887 router with IOS 15.4
Configuring IPFIX export on a Cisco ASA firewall

Configuring IPFIX export on a Cisco Firepower firewall

e Configuring IPFIX export on a Juniper SRX-100 firewall

e Configuring IPFIX export on a Juniper MX router

e Configuring NetFlow export on a Paloalto PA-500 firewall
e Configuring IPFIX export on a Mikrotik router

e Configuring NetFlow V9 export on a Huawei AR150 router

e Configuring NetFlow V9 export on a Huawei Eudemon 8000E-X
firewall

e Configuring IPFIX export on a Fortinet FG-60 firewall

e Configuring IPFIX export on a SonicWALL firewall with SonicOS 7.0
e Configuring IPFIX export on a Sophos firewall

* Configuring IPFIX export on a Checkpoint firewall

e Configuring IPFIX export on a Watchguard firewall

e Configuring IPFIX export on a BigIP F5 Load Balancer

Objectives

The chapter will guide the reader to implement flow data export on most
widespread Layer3 devices such as firewalls, routers, load balancers,
wireless gateways from most vendors on the market. Obviously this chapter
focuses on common devices; newer models (for example, Cisco IOS-XE
routers) may require adjusted commands. As a rule of thumb, always check
the documentation provided by the vendor.

Catching network flows on Layer 3

Flow technology was born on Layer 3 devices. NetFlow is a feature that
was introduced on Cisco routers around 1996, and it provides the ability to
collect IP network traffic as it enters or exits an interface. So, in the stack of
the network infrastructure, Layer 3 devices (moving IP data flows inside
and outside) are the best candidates and the most suitable to check for flow
data. Almost any router, firewall, load balancer, and generic Layer 3 device
provides this opportunity.

Tip: One important consideration, if you want to make good use of flow technology, you
should reduce to minimum, the use of NAT. NAT alters IP addresses, making it harder to

track original flow sources/destinations, thus reducing flow data accuracy. This would be
ideally used (if public IP addresses are not available) only on the external interface of a
firewall. NAT technology can be a life saver in certain cases, but should not be abused since it
reduces performance and messes up the logics of network routing.

General considerations for the example configurations

All the configurations provided here were tested on real devices, but as
always, it is a good procedure to refer to the product documentation for
your specific version to ensure accuracy. Please also note that the exact
commands and syntax might vary depending on the version of the device
firmware. All the examples configure the described device to send NetFlow
or IPFIX data to a collector running on IP address 10.1.30.220 on UDP port
2056.

Configuring NetFlow v9 export on a Cisco 1721 router with
10S 12.1

To configure NetFlow v9 export on a Cisco 1721 router with 10S 12.1,
follow the given steps:
1. Access the Cisco 1721 router: Connect to the Cisco 1721 router using
a terminal emulator, console cable, or SSH.
2. Enter global configuration mode:
enable
configure terminal

3. Enable NetFlow on the router:
ip flow-export source <interface>
ip flow-export version 9
ip flow-export destination 10.1.30.220 2056

Replace <interface> with the actual interface you want to use as the
source for NetFlow export. This is typically the interface facing the
collector.

4. Enable NetFlow on specific interfaces: Apply NetFlow to specific
interfaces you want to monitor. For example, to enable NetFlow on
interface FastEtherneto/o:

interface FastEtherneto/0
ip flow ingress
5. Set flow exporting parameters: Configure additional parameters like
the active and inactive timeout values:
ip flow-cache timeout active 60
ip flow-cache timeout inactive 15

6. Save configuration and exit:
end
write memory

These commands save the configuration and exit from configuration
mode.

Configuring NetFlow v9 export on a Cisco 2800 router with
10S 12.3

To configure NetFlow v9 export on a Cisco 2800 router with IOS 12.3,
follow the given steps:
1. Access the Cisco 2800 router: Connect to the Cisco 2800 router using
a terminal emulator, console cable, or SSH.
2. Enter global configuration mode:
enable
configure terminal

3. Configure NetFlow version 9:
ip flow-export version 9

This command sets the NetFlow export version to version 9.

4. Set the NetFlow exporter
ip flow-export destination 10.1.30.220 2056
This will send all NetFlow data to IP address 10.1.30.220 on 2056

UDP port.

5. Configure flow monitoring on interfaces: Apply NetFlow to specific
interfaces you want to monitor. For example, to enable NetFlow on
interface GigabitEtherneto/o:
interface GigabitEtherneto/o

ip flow ingress
6. Set flow exporting parameters (optional):
ip flow-cache timeout active 60
ip flow-cache timeout inactive 15
These commands set the active timeout to 1 minute and the inactive
timeout to 15 minutes.
7. Save configuration and exit:
end
write memory

These commands save the configuration and exit from configuration mode.

Configuring IPFIX export on a Cisco 887 router with 10S 15.4

To configure IPFIX export on a Cisco 887 router with IOS 15.4, follow the
given steps:
1. Access the router: Connect to the router either through the console
port or via SSH/Telnet.
2. Enter privileged EXEC mode:
enable

3. Enter global configuration mode:
configure terminal

4. Enable IPFIX on the router:

ip flow-export version 10

5. Specify the IP address and port of the collector:
ip flow-export destination 10.1.30.220 2056

6. Configure flow export template refresh rate (optional): This step is
optional and defines how often the router will send templates to the
collector. The value is in seconds.
ip flow-export template refresh-rate 30

7. Configure interfaces for IPFIX: Go to the interface configuration
mode for each interface you want to monitor.
interface <interface-type> <interface-number>

Make sure to replace <interface-type> and <interface-

number> with the specific values for your router.

8. Enable IPFIX on the interface:
ip flow ingress

9. Configure flow monitor (optional): This step is optional and allows
you to create a flow monitor for more granular control.
flow monitor <monitor-name>
record NetFlow-original

10. Apply flow monitor to interface (optional): If you created a flow
monitor, apply it to the interface.
ip flow monitor <monitor-name> input

11. Exit interface configuration mode:
exit

12. Exit configuration mode:
exit

13. Save configuration: Save the configuration to ensure changes persist
after a reboot.
write memory

14. Verify configuration: Check the configuration to ensure that
everything is set up correctly.
show ip flow export
show ip flow export statistics

15. Exit privileged EXEC mode:
exit

Configuring IPFIX export on a Cisco ASA firewall

To configure IPFIX export on a Cisco ASA firewall, follow these steps:

1. Access the Cisco ASA: Connect to the Cisco ASA device using a
terminal emulator, SSH, or through the device's console port.

2. Enter configuration mode:
enable
configure terminal

3. Enable NetFlow on the ASA:

flow-export destination inside 10.1.30.220 2056
flow-export template timeout-rate 1

Here,

flow-export destination inside specifies that the flow
records should be exported from the inside interface.

10.1.30.220 is the IP address of the collector.

2056 is the port number on which the collector listens for NetFlow
records.

4. Specify the flow record format (optional): You can configure the
ASA to export a specific template for NetFlow records. This step is
optional but can be useful for ensuring compatibility with the collector.

flow-export template timeout-rate 1

The timeout-rate option determines how often the template is
exported in relation to data records. In this example, the template is
exported once for every data record.

5. Configure NetFlow version (optional): By default, the ASA uses
NetFlow version 9. If your collector supports a different version, you
can configure it explicitly:

flow-export version 9

This command sets the NetFlow export version to 9. If your collector
supports a different version, adjust accordingly.

6. Specify the traffic to monitor: Specify the traffic you want to monitor
using NetFlow. You can apply this to specific interfaces, subnets, or
traffic types. Policy maps define traffic monitoring rules, linking
access-lists to flow-export actions. For example, to enable NetFlow on
the outside interface:
access-list NetFlow-export extended permit ip any
any

class-map NetFlow-export-class
match access-list NetFlow-export
policy-map global policy
class NetFlow-export-class
flow-export event-type all destination

10.1.30.220

This example creates an access list allowing all IP traffic and associates
it with a class map. The policy map then applies the NetFlow export to
the specified destination IP.

7. Apply the policy map to the interface: Apply the policy map to the
interface(s) where you want to monitor traffic:

service-policy global policy global
This command applies the global_policy to the interface.
8. Verify configuration: Verify that the configuration is correct:
show flow-export counters
This command displays the NetFlow export counters, allowing you to
verify that records are being sent to the collector.

9. Save configuration: Save the configuration to ensure it persists after a
reboot:

write memory

10. Exit configuration mode:
exit

Configuring IPFIX export on a Cisco Firepower firewall

To configure IPFIX export on a Cisco Firepower firewall, follow the given
steps (assuming you have the necessary administrative access to the
firewall):

1. Access the Cisco FMC: Open a web browser and enter the IP address
or hostname of your Firepower Management Center (FMC).

2. Login to FMC: Enter your credentials to log in to the Firepower
Management Center.

3. Navigate to device management: From the FMC dashboard, go to
Devices or System (depending on your software version). Select the
appropriate device (Firepower Threat Defense device) from the list.

4. Configure IPFIX: Under the selected device, go to Platform Settings
or a similar section. Locate and select Logging or Syslog settings.

5. Enable IPFIX: Find the IPFIX section and enable it. Specify the

collector IP address (10.1.30.220) and the export port (2056).

6. Define IPFIX template: Some Firepower versions require you to
define an IPFIX template. If so, specify the necessary parameters such
as flow fields, record format, and so on. The template defines the
information that will be exported to the IPFIX collector.

7. Apply and save configuration: After configuring the IPFIX settings,
save your changes.

8. Deploy configuration: Deploy the updated configuration to the
Firepower device. This step is crucial to apply the changes.

9. Verify configuration: Confirm that the IPFIX configuration has been
applied successfully. Check the status or logs for any errors or
warnings related to IPFIX configuration.

Configuring IPFIX export on a Juniper SRX-100 firewall

Configuring IPFIX on a Juniper SRX100 involves several steps. IPFIX is a
standardized protocol for exporting flow information from network devices
to a collector. Here is a step-by-step guide for configuring IPFIX export to a
collector with the IP address 10.1.30.220 and port 2056 on a Juniper
SRX100:

1. Access the device: Connect to the Juniper SRX100 device using the

command line interface (CLI) via SSH or the console.
2. Enter operational mode: Enter operational mode by typing:
cli

3. Configure IPFIX: Enter configuration mode
configure
4. Specify IPFIX export parameters: Configure the basic parameters
for IPFIX export, including the destination IP address and port:
set services flow-monitoring version-IPFIX
template templatel
set services flow-monitoring version-IPFIX
template templatel ipv4-template
set services flow-monitoring version-IPFIX
template templatel template-refresh-rate 10

set services flow-monitoring version-IPFIX
transport udp

set services flow-monitoring version-IPFIX
transport udp udp-port 2056

set services flow-monitoring version-IPFIX
transport udp udp-source-port 4739

set services flow-monitoring version-IPFIX
template templatel option-refresh-rate 10
In these commands:
templatel is the template name.
ipv4-template indicates that it is an IPv4 template.

template-refresh-rate sets the template refresh rate to 10
seconds.

transport udp specifies the transport protocol as UDP.

udp-port sets the destination UDP port to 2056.
udp-source-port sets the source UDP port to 4739.

. Specify the exporter: Configure the exporter information, including
the source address and template:

set services flow-monitoring version-IPFIX
template templatel option-refresh-rate 10

set services flow-monitoring version-IPFIX
template templatel option-scope-interfaces

set services flow-monitoring version-IPFIX
active-flow-timeout 60

set services flow-monitoring version-IPFIX
inactive-flow-timeout 60

set services flow-monitoring version-IPFIX
source-address 10.1.30.1
Here,
option-scope-interfaces includes interface information in the
exported flow records.
active-flow-timeout and inactive-flow-timeout set the
timeout values for active and inactive flows.

source-address is the IP address of the device exporting the flow
records.
6. Apply flow monitoring to interfaces: Apply flow monitoring to the

desired interfaces:

set interfaces ge-0/0/0 unit © family inet
sampling input

set interfaces ge-0/0/0 unit © family inet
sampling output
Replace ge-0/0/0 with the actual interface you want to monitor.

7. Commit the configuration: Commit the configuration changes:
commit

8. Exit configuration mode:
exit
9. Verify configuration: Verify that the configuration is applied correctly
by checking the status:
show services flow-monitoring

Ensure that the output indicates that IPFIX is enabled and the templates are
configured.

Configuring IPFIX export on a Juniper MX router

To configure IPFIX export on a Juniper MX router, follow these steps:

1. Access the Juniper MX router: Log in to the Juniper MX router
using a terminal or SSH session.

2. Enter configuration mode: Access the configuration mode on the
router by entering the following command:
configure
3. Configure IPFIX export profile: Create an IPFIX export profile that
specifies the collector's IP address and port. Assign a name to the
profile, such as IPFIX-export-profile.
set services flow-monitoring version-IPFIX
export-profiles IPFIX-export-profile
set services flow-monitoring version-IPFIX

export-profiles IPFIX-export-profile local-address
XoXoXoX

set services flow-monitoring version-IPFIX
export-profiles IPFIX-export-profile collector-
address 10.1.30.220

set services flow-monitoring version-IPFIX
export-profiles IPFIX-export-profile collector-port
2056

Replace x.x.x.x with the router's IP address.

4. Configure flow monitoring for interfaces: Enable flow monitoring
for the specific interfaces that you want to export flows for.
set interfaces ge-0/0/0 unit © family inet
sampling input
set interfaces ge-0/0/0 unit © family inet
sampling output
Replace ge-0/0/0 with the actual interface name.

5. Associate IPFIX export profile with flow monitoring: Associate the
previously configured IPFIX export profile with the flow monitoring
configuration on the router.

set services flow-monitoring version-IPFIX

set services flow-monitoring version-IPFIX
template refresh-rate 10

set services flow-monitoring version-IPFIX
template active-timeout 60

set services flow-monitoring version-IPFIX
template inactive-timeout 60

set services flow-monitoring version-IPFIX
template rate-limit 1000

6. Commit the configuration: Commit the changes to apply the
configuration.
Commit

7. Verify configuration: Verify that the configuration is applied correctly
by checking the IPFIX export profile and flow monitoring status.

show configuration services flow-monitoring
show services flow-monitoring version-IPFIX

Ensure that the collector address, port, and interface associations are
correctly configured.

This configuration assumes that the Juniper MX router is running Junos OS
with support for IPFIX.

Configuring NetFlow export on a Palo Alto PA-500 firewall

To configure NetFlow export on a Paloalto PA-500 firewall, follow these
steps:
1. Log in to the Palo Alto Device: Access the Palo Alto firewall's web
interface or use the CLI to log in.

2. Configure NetFlow: Navigate to the Device tab and select Setup.
Under the Management section, click on Logging and Reporting.
Click on NetFlow. Click the Enable NetFlow checkbox. Configure the
following parameters:

a. NetFlow profile:
1. Click on Add to create a new NetFlow profile.
i1. Set a name for the profile (for example, NetFlow-Profile).
i11. Select the version as IPFIX.
iv. Set the Collector IP address to 10.1.30.220.
v. Set the Port to 2056.

b. Template refresh rate (minutes): Set the interval at which the
template is sent to the collector.

c. Active timeout (seconds): Set the active flow timeout.

d. Inactive timeout (seconds): Set the inactive flow timeout.
3. Apply NetFlow profile to interfaces:

a. Navigate to the Network tab and select Interfaces.

b. Click on the interface to which you want to apply NetFlow.

c. In the Interface Management Profile section, select the NetFlow
profile you created (for example, NetFlow-Profile) from the drop-
down menu.

4. Commit changes: Click on the Commit button to apply the changes.
5. Verify configuration: To verify that NetFlow is working, check the
flow logs or use monitoring tools on your NetFlow collector.
To configure NetFlow export to IP address 10.1.30.210 on a Palo Alto PA-
500 via CLI only, follow these steps:
1. Enter configuration mode: Log in to the PA-500 via SSH or console,
then enter configuration mode:
Configure
2. Define the NetFlow server: Set up the NetFlow collector with 1P
10.1.30.220 and a specific UDP port (for example, 2056):
set deviceconfig setting NetFlow collector ip
10.1.30.220 port 2056

3. Configure the NetFlow template refresh rate: Set the refresh rate (in
seconds) and template timeout (in minutes). Adjust these values as
needed:

set deviceconfig setting NetFlow template-refresh-
rate 30

set deviceconfig setting NetFlow template-timeout-
rate 5

4. Enable NetFlow on the desired interface: Determine which interface
(for example, ethernetl/1) you want to monitor, then enable NetFlow
on that interface:

set network interface ethernet ethernetl/1 layer3
NetFlow-profile default

Repeat this command for all interfaces that need NetFlow monitoring.
5. Commit the configuration: Apply the changes:
commit

6. Verify NetFlow configuration: To verify that NetFlow 1s configured
correctly, run:

show NetFlow statistics

7. To ensure the configuration is applied to an interface, check:
show interface ethernetl/1

8. Optional debugging commands: If NetFlow data is not being sent or

received correctly:

show NetFlow status
show NetFlow template

Configuring IPFIX export on a MikroTik router

To configure IPFIX export on a Mikrotik router, follow these steps:

1. Access RouterOS CLI: Connect to the MikroTik router through SSH,
Telnet, or directly through the console.

2. Navigate to IPFIX configuration: Enter the following command to
access the IPFIX configuration section:
/ip IPFIX

3. Set active flow timeout and cache time: It is recommended to set the
active-flow-timeout and cache-timeout parameters. These
values control how long flows are kept in the cache. For example:
set active-flow-timeout=5m
set cache-timeout=1m

4. Configure IPFIX export: Enter the command to configure IPFIX
export. Replace <collector-IP> with the actual IP address of your
collector (10.1.30.220) and <collector-port> with the desired port
(2056):
add name=exporter-1 target-addresses=<collector-IP>
target-port=<collector-port>

5. Enable IPFIX on interfaces: To enable IPFIX on specific interfaces,
use the following command. Replace <interface> with the name of
the interface you want to monitor (for example, ether1l):

/interface ethernet set <interface> IPFIX-
template=exporter-1

6. Verify configuration: To verify the configuration, you can check the
status and details of the IPFIX exporter:

/ip IPFIX print detail

7. Save configuration: Save the configuration to make the changes
persistent across reboots:

/export compact file=your_config backup
8. Save the configuration:
/save

Configuring NetFlow v9 export on a Huawei AR150 router

To configure NetFlow v9 export on a Huawei AR150 router, follow these
steps:
1. Access the router: Connect to the Huawei AR150 router using a
terminal emulator or SSH.
2. Enter system view: Enter system view to access the global
configuration mode.
system-view
3. Enable NetStream: Enable the NetStream feature globally on the
router.
Netstream

4. Configure NetStream export: Configure NetStream to export flow
information to the specified collector IP address and port.

netstream export host 10.1.30.220 port 2056

5. Specify export source interfaces: Specify the interfaces from which
the NetStream data will be exported. Replace
GigabitEthernet0/0/1 with the actual interface connected to the
network.
interface GigabitEtherneto/0/1
netstream outbound
Repeat this step for each interface you want to monitor.

6. Configure flow record: Configure the flow record to define the fields
to be included in the exported data. You can customize this based on
your requirements.
netstream record flow-record ipv4 original-input
match ipv4 source-address
match ipv4 destination-address
match transport source-port

match transport destination-port
collect counter packets

collect counter bytes

collect interface input

7. Apply flow record: Apply the configured flow record to the interfaces.
interface GigabitEtherneto/0/1
netstream record ipv4 original-input
Repeat this step for each interface.

8. Save configuration: Save the configuration to ensure changes persist
after a reboot.
save

9. Verify configuration: You can check the NetStream configuration to
ensure it is applied correctly.
display netstream configuration

10. Exit and logout: Exit the configuration mode and logout from the
router.
quit

Configuring NetFlow v9 export on a Huawei Eudemon 8000E-
X firewall

To configure NetFlow v9 export on a Huawei Eudemon 8000E-X firewall,
follow these steps:

1. Connect to the Eudemon firewall: Log in to the Eudemon firewall
using a terminal or SSH session.

2. Enter system view: Enter system view to access the global
configuration mode.

system-view

3. Create an IPFIX template: Create a new IPFIX template to be used
in the configuration:

flow IPFIX-template template-name TEMPLATE_NAME
Replace TEMPLATE_NAME with a meaningful name for your template.
4. Configure IPFIX export parameters: Configure the IPFIX export

parameters for sending data to the collector:
flow IPFIX-template TEMPLATE_NAME
export version 10
export collector COLLECTOR_ADDRESS COLLECTOR_PORT
export source INTERFACE_TYPE INTERFACE_NUMBER
Here,
Replace TEMPLATE_NAME with the name of the template created in the
2" step.
Replace COLLECTOR_ADDRESS with the IP address of the collector
(10.1.30.220 in your case).
Replace COLLECTOR_PORT with the port number on which the
collector is listening (2056 in your case).
Replace INTERFACE_TYPE and INTERFACE_NUMBER with the
appropriate interface type and number for the source interface.

5. Apply the IPFIX template to the firewall policy: After creating the
Netstream configuration, it must be applied to a Firewall Policy.
firewall policy POLICY_ID

flow-export template TEMPLATE_NAME

quit
Here,
Replace POLICY_ID with the ID of the firewall policy to which you
want to apply the IPFIX template.
Replace TEMPLATE_NAME with the name of the template created in the
2" step.

6. Save configuration: Proceed with saving the configuration to make it
permanent across reboots:
save

7. Verify configuration: You can verify the IPFIX configuration using
the following commands:
display IPFIX-template
display firewall policy POLICY_ID
Replace POLICY_ID with the ID of the firewall policy you configured.

8. Exit system view: Now that the configuration is completed, you can
exit the system view mode.

quit

9. Restart the firewall process (optional): If required, you can restart
the firewall process to apply the changes immediately:
reset firewall

Configuring IPFIX export on a Fortinet FG-60 firewall

To configure IPFIX export on a Fortiner FG-60 firewall:

1. Access the Fortinet web interface: Log in to the Fortinet web
interface using a web browser.

2. Configure IPFIX:
a. Navigate to System | Settings.
b. Under Logging and Reporting, click on Settings.
c. In the Settings page, find the IPFIX section.
d. Enable IPFIX by checking the Enable IPFIX box.
e. Set the IPFIX Collector to 10.1.30.220.
f. Set the Collector Port to 2056.
g. Configure other IPFIX settings as needed.
3. Apply IPFIX to security policies (optional):

a. If you want to apply IPFIX to specific security policies, navigate to
Policy & Objects | IPv4 Policy.

b. Edit the security policy for which you want to enable IPFIX.

c. Under the Logging Options section, enable Log Allowed Traffic
and Log Denied Traffic.

d. Save the configuration.

4. Save configuration: Click on the Apply button to save the IPFIX
configuration.

5. Verify configuration: Verify that IPFIX is enabled and configured
correctly:

a. Navigate to System | Settings | Status.

b. In the System Information section, check the status of IPFIX.

Please note that the screenshots and steps provided are based on Fortinet
documentation for version 7.0. The web interface and configuration options
may vary slightly depending on your Fortinet FortiOS version. Always refer
to the official Fortinet documentation for your specific FortiOS version to
ensure accurate configuration.

Configuring IPFIX export on a SonicWALL firewall with
SonicOS 7.0

To configure IPFIX export on a SonicWall firewall with SonicOS 7.0,
follow these steps:

1. Login to SonicWall management interface: Open a web browser and
enter the IP address of your SonicWall device. Log in with your
credentials.

2. Navigate to the log settings:
a. In the SonicOS management interface, go to the Manage tab.
b. Select Log Settings from the left-hand menu.
3. Enable IPFIX:
a. Under the Log Settings page, find the IPFIX section.
b. Enable IPFIX by toggling the switch to the On position.
4. Configure IPFIX settings:

a. Once IPFIX is enabled, you should see options to configure the
IPFIX settings.

b. Enter the IP address of the collector in the Server IP Address
field. In this case, enter 10.1.30.220.

c. Set the Server Port to 2056.

5. Choose template options: SonicWall allows you to choose a
predefined template or customize the template for exporting IPFIX
records. Choose the appropriate option based on your requirements.

6. Select interfaces to export: Choose the network interfaces whose
traffic you want to export as IPFIX records. This is typically done in
the same section where you configure IPFIX settings.

7. Save and apply changes: After configuring the IPFIX settings, save
the changes.

8. Verify configuration: Go back to the Log Settings page and confirm
that IPFIX is still enabled, and the settings are correctly configured.

Please note that the steps outlined here are general and based on SonicOS
7.0. The exact steps might differ based on the specific model and firmware
version of your SonicWall device. Refer to the SonicWall documentation or
contact SonicWall support for model-specific instructions or any updates to
the firmware.

Configuring IPFIX export on a Sophos firewall

To configure IPFIX export on a Sophos firewall, follow these steps:

1. Login to Sophos XG firewall web interface: Open a web browser and
enter the IP address of your Sophos XG firewall. Log in with your
administrative credentials.

2. Navigate to Log & Report Settings: In the Sophos XG firewall web
interface, go to Log & Report in the left-hand menu.

3. Select the log settings: Click on Log Settings under Log & Report.

4. Configure IPFIX settings: Scroll down to find the IPFIX section and
enable IPFIX by toggling the switch to the ON position.

5. Specify IPFIX collector settings:

a. Enter the IP address of the collector in the Collector IP field
(10.1.30.220).

b. Set the Collector Port to 2056.
6. Choose protocol and template version:

a. Select the appropriate IPFIX protocol version. Common choices are
9 and 10.

b. Choose the IPFIX template version. Version 10 is widely used.

7. Configure export interval: Set the Export Interval to define how
often the Sophos XG firewall should export IPFIX records.

8. Enable logging for specific traffic types (optional): You can choose
to log specific types of traffic by toggling the corresponding switches

(for example, Enable Logging for UDP, Enable Logging for TCP).

9. Save and apply changes: After configuring the IPFIX settings, scroll
down and click on the Save button.

10. Firewall rule configuration (if necessary): If there are restrictive
firewall rules, ensure that traffic from the Sophos XG firewall to the
IPFIX collector on port 2056 is allowed.

11. Restart services (if necessary): In some cases, changes to IPFIX
settings may require restarting the firewall or related services. Check
the Sophos XG documentation for guidance on restarting services if
needed.

Configuring IPFIX export on a Checkpoint firewall

To configure IPFIX export on a Checkpoint firewall, follow these steps:

1. Log in to Checkpoint Management Server: Access the Checkpoint
Management Server, where the firewall configuration is managed.

2. Open SmartDashboard: Use the SmartDashboard application to
configure the firewall settings.

3. Navigate to the firewall object:

a. In the SmartDashboard, locate the firewall object for which you
want to enable IPFIX.

b. This is typically found in the Objects sidebar under Network
Objects.

4. Edit firewall object: Right-click on the firewall object and select Edit.
5. Enable NetFlow on the firewall object:
a. In the firewall object properties, go to the Logs and Masters tab.
b. Enable NetFlow and select IPFIX as the NetFlow version.

6. Configure IPFIX export parameters: Click on the IPFIX tab (or
similar) to access the IPFIX settings. Set the following parameters:

a. Collector IP Address: Enter 10.1.30.220 as the IP address of the
collector.

b. Collector Port: Set the port to 2056 (or the desired port on the
collector).

c. Export Interval: Define the interval at which flow information is
exported.

7. Save changes: Click OK or Apply to save the changes made to the
firewall object.

8. Install policy: After making changes, install the policy to apply the
new configuration to the firewall.

9. Verify configuration: Confirm that the IPFIX configuration is
successfully applied by checking the firewall logs or using monitoring
tools.

Note: The exact steps and terminology may vary slightly depending on the Checkpoint
firewall version. Always refer to the official documentation for your specific version for the
most accurate and up-to-date information.

Configuring IPFIX export on a WatchGuard firewall

To configure IPFIX export on a WatchGuard firewall, follow the given
steps:

1. Access the WatchGuard Web UI: Open a web browser and enter the
[P address of your WatchGuard firewall to access the Web UL

2. Login to the Web UI: Enter your administrator credentials to log in to
the WatchGuard Web UL

3. Navigate to Logging & Notification: In the Web UI, go to System
and then select Logging & Notification.

4. Configure log settings:
a. Under the Logging & Notification section, click on Log Settings.
b. Look for the Settings tab or a similar option.

5. Enable flow reporting:

a. Locate the option for flow reporting or NetFlow, which may be
under the Proxy or Services section.

b. Enable flow reporting and choose the appropriate version (for
example, [PFIX).

6. Configure IPFIX settings:
a. Find the IPFIX settings or NetFlow configuration section.

b. Enter the IP address of the collector (for example, 10.1.30.220) in
the designated field.

7. Specify collector port: Enter the port number for the IPFIX collector
(for example, 2056).

8. Adjust flow timeout settings: Set the flow timeout values according
to your requirements. These values determine how long a flow is
considered active before being exported.

9. Save configuration: After making the necessary changes, save the
configuration.

10. Verify configuration: Verify the IPFIX configuration by checking the
settings and ensuring that the collector IP address and port are correctly
specified.

11. Restart services: In some cases, you may need to restart the services
or the firewall for the changes to take effect. Check for a Restart or
Apply Changes option in the Web UI.

Configuring IPFIX export on a BigIP FS5 load balancer

To configure IPFIX export on a BiglP F5 load balancer, follow these steps:

1. Access the F5 configuration utility: Open a web browser and enter
the management IP address of your F5 BigIP load balancer. Log in
with your credentials.

2. Navigate to the IPFIX configuration: In the F5 configuration utility,
go to System and then Logs.

3. Create an IPFIX pool:
a. Click on Configuration and then Local Traffic.
b. Under Pools, click Create to create a new pool.

c. Configure the pool with a name (for example, IPFIX pool) and
add the IP addresses of the devices from which you want to collect
flow data.

4. Create an IPFIX iRule:
a. Go to iRules under Local Traffic.
b. Click Create to create a new iRule.

c. Provide a name (for example, IPFIX irule) and add the following
example iRule script:
when CLIENTSSL_HANDSHAKE {
IPFIX: :template add 256 4 8 4 4 2 2

}

This iRule is a basic example, and you may need to adjust it based
on your specific requirements and the version of F5 software you

are using.
5. Attach the iRule to the virtual server:
a. Go to Local Traffic and then iRules.
b. Click on your iRule (for example, IPFIX irule) and attach it to the
appropriate Virtual Server.
6. Configure the IPFIX exporter:
a. In the configuration utility, go to System and then Logs.
b. Click on Configuration and select the Remote Logging tab.
c. Click Create to create a new remote logging profile.
d. Set the following parameters:
1. Name: Choose a name for the profile (for example,
IPFIX exporter).

ii. Remote High-Speed Log Servers: Add the IP address and port
(for example, 10.1.30.220:2056) of the IPFIX collector.

iii. Protocol: Select UDP or TCP based on your collector's
requirements.

iv. Facility: Choose local0 or another facility based on your syslog
configuration.

e. Click Finished to save the configuration.
7. Apply the IPFIX exporter to the pool:
a. Go to Local Traffic and then Pools.
b. Click on the pool you created (for example, IPFIX pool).
c. In the Logging section, select the IPFIX exporter profile you
created.
8. Save and apply configuration: After completing the preceding steps,

click Apply or Update to save and apply the configuration changes.

9. Verify configuration: Test the configuration by generating traffic
through the load balancer and checking if flow data is sent to the
configured IPFIX collector.

Keep in mind that F5's interface and options might vary slightly depending
on the software version. Refer to F5's official documentation for your
specific version for more detailed and accurate instructions.

Conclusion

In this chapter, we have seen how to configure most widespread Layer 3
types of network devices to send flows to a named collector, and in the
previous one, we have seen how to spot traffic flows on Layer 2 devices,
too.

In the next chapter, we will see how to work on different devices; this can
be necessary in different scenarios, like not on-premises network
infrastructure or particularly important systems. However, if your network
infrastructure is on-premise, the infrastructure itself can be self-monitoring
itself, providing useful information to an intelligent collection system that
can track down anomalies and unusual patterns. We will explore this further
in subsequent chapters.

CHAPTER 6

Implementing Flow Export on
Servers

Introduction

So far, we have seen how to exploit flow data exporting from Layer 2
devices to virtualization platforms. Basically, we covered the widest possible
available options. However, in scenarios where we lack control over the
infrastructure, such as cloud-based systems, obtaining flow data directly
from network devices may not be feasible. Just think of cloud-based systems
inside VPC that are isolated network environments in cloud platforms, and
so on. Whatever your cloud provider is, chances are that you will not be
allowed (to even ask) to collect flow data simply because the devices that
see and manage network traffic are shared with several customers, and they
will not give you the same for privacy reasons.

So, are we stuck? No. Not at all. It obviously depends on your organization
and your available budget. There are many commercial alternatives
available, such as nProbe or Flowmon Probe; however, we will focus on
freely available alternatives. On one hand, this will give the benefit of not
dealing with excessively high costs if you have a lot of hosts; on the other,
this will provide you with the option to test if flow monitoring is what you
really want for your cloud-based systems without investing a fortune.

Structure

In this chapter, we will discuss the following topics:
e (Catching network flows on Microsoft Windows systems
e (Catching network flows on Linux and UNIX systems

Objectives

By the end of this chapter, readers will learn to install and configure hsflowd
and softflowd on Windows and Linux/UNIX systems, enabling flow data
export from servers in cloud or unmanaged environments.

Catching network flows on Microsoft Windows systems

There are some open-source projects available around, but the one we are
going to discuss is very interesting and also available for several different
platforms. The software is an sFlow exporter called host sFlow (hsflow) and
it is available with all sources at https://sflow.net/index.php.

The software is available both in source code form and as MSI packages, so
it can be easily deployed using SCCM or other solutions like a GPO. The
software can run from Windows XP to later versions, like Windows 2003,
Windows 2008 and later.

The installation is very easy; it gets installed as a Windows Service, which
starts automatically at boot.

Once you downloaded the MSI file, just click on it to run it (as
Administrator) and start the installation, as shown in the following figure:

https://sflow.net/index.php

ﬂ? sFlow agent Setup M= E

Welcome to the sFlow agent Setup
Wizard

The Setup Wizard will install sFlow agent an your computer.
Chck, Nexk bo continue or Cancel bo exit the Setup Wizard,

Cancel

Figure 6.1: Installing the hsflowd agent

Evaluate the license terms and accept the license, clicking Next to proceed,
as shown:

i'\.‘!:II‘ sFlow agent Setup M= E3
End-Uscr Licensc Agrecmcnt
Please read the Following license agreement carefully
ADAPTIVE PUBLIC LICENSE ﬂ
“ersion 1.0

THE LICENSED WORK I3 FROVIDED UNDER THE TERMS OF THIZ
ADAPTIVE PUBLIC LICENSE ("LICENSE™). ANY LISE,
REPRODUCTION OR DISTRIBUTION OF THE LICEMSED WORK
CONSTITUTES RECINENT'S ACCEMNTANCE OF THIS LICENSE ANMD
TS TERMS, WHETHER OR MOT SUCH RECIFIENT READS THE
TERMS OF THIS LICEMSE. "LICENSED WORK" AMD "RECIFIENT"
ARE DEFINED BELOWY.

[

[1 accept the terms in the License Agreement

Prink Back I Mexk I Cancel |

Figure 6.2: Accepting the licensing terms
Press Next to accept the destination folder, as shown:

i'él sFlow agent Setup

Destination Folder
Click Mext toinstall to the defaulk Folder or click Change ko choose another,

Install sFlovwe agent to;

IC:'I,F‘ru:ugram Files\Host sFlow ProjectiHost sFlow Agent),

Change. .. |

Back I [I Cancel I

Figure 6.3: Choose folder for installation
In the following examples, we configure it to send flow data to the collector
on IP 10.1.30.220 (the default UDP port for sFlow is 6343; if a different port

is needed, it can be specified with two colons after the IP address, like
10.1.30.220:6343). Refer to the following figure:

ii5 sFlow agent E

Set sampling parametars
If DMS-50 configuration is enabled, the configuration will be set automatically

through DMS, and cannat be manually set,

[Configure using DMNS-50

sFlow collectar: [10,1,30,220]

Counter palling inkerval {53 |2|:|

Back, I Mexk I Cancel

Figure 6.4: Choose IP address and port for sFlow collector

Once the parameters are setup, press Install and the installation will begin. If
the installer fails, ensure administrative privileges and check event logs for
eITors:

i'x‘!:“ sFlow agent Setup M= B

Ready to install sFlow agent

Click Install ko beqin the installation, Click Back ko review ar change any af your
installation settings, Click Cancel to exit the wizard.

Back, I Install I Cancel

Figure 6.5: Start installation and configuration process

The files will be copied, the service will be set up, and the installation will
be complete, as shown:

i'él sFlow agent Setup

Completed the sFlow agent Setup Wizard

Click the Finish buttan ko exit the Setup Wizard,

Back,

I Finish I

Zamcel I

Figure 6.6: Finish the installation

We can check if the service is correctly running by checking on Windows
Services and looking for the Host sFlow Agent Properties. It should be
running with Startup Type Automatic, as shown:

LN BT

st s Flow Agent.

the service
Bsdait U smavies

Desiptan:
sFlow agent providing host and network:

waanl

| Desiption

ribubed Link Tradkng Chent

Tk Tranesetin U nnins
fa

| Encrypting Fis Sythem (EFS)
Exbonsible deithontication Mrotocol

T unction Discovery Frovider | et
s Doy R Publs....
aghe €1 pume: Ebevotions Servie (6.

JHasith ey and Cerbiicste Mansgs, .
iy Host sPiowy Agant.

man Irkerface Divice Access

and AshiP IPsec Eyping Modues
ractive Scrveea Debedtion
Irterrest Correckion Sharing (IS}
nerreet Explorer ETW Collechor Ser...
Hslper

P5e Pobcy Agent

skbmiftn for Distributed Transsdtion . ..
il seper Trpeloy Tisrenvary Meppes
secslt NET Framivaseh MOEM 2.
Mcracnfi MET Framesncek NGEM vZ...
yMicrosoft HET Framovwark NGEM v1 ..
yMicroncht MET Framoscrk RGIM A ...
1 Mieresalt Misre Channel Plotfers Re.._

Prorvides Deskinp Window Manager sl
Registens and updates TP addresses |
The Biagnosi: Pabcy Service enables
The Disgnosti: Sarvice Hast b ussd b
The Disgrostic Sysbem Host i wssd b
The Diagnestics Trackng Servics enal
Prowichs Desh Defracmancation Capat
Makritaines Inks betwesn NTFS fles wit
Uaerrinar R AT HRAr SN T
The BHE enk cories {dnceachel o
Prevvichit v cinris s anvryptien ek
Tho Exborsible Authontication Protac
The FDA 35T service hosts the Munc
Pulied s s L @ e

The servics b resporeiis for spplying
Frenckes 150 et ate and ey mi
SFiow 8Nk Droviling Fost and netk
Enakles genec input acoess to Hame
The IKEEXT sanice hosts the Inteme
Encblza uscr nokiication of uscr ingal
Pronvides netwark, sddness kraralation
ETW Celactor Sarvice For Interret Ex
Frioveickts: bunned conmectivity using B9
Inberret Protocol security (1P5ec)
Cncrdnates ransactions b

ek <l Agent Propert

Generd | Log O | Recovey | Dependencie: |

Service name. TIENR
Dby nons. il 3P ke S
Dhewciiphien:

Foth bo cacoutobic:

"C:AProgram Files\Hest sFlow ProjectiHost sPlow Agertibaflowd ene”

sFlow agert prorviding host nd network suspor

Statp o [asomac i
Help me conhg.ee serice shalup opbons,
Service status: Stated

| s

i ey ey e el o et o il bt s o W i
frzm

hasa.

[

i

Larcel

b A Heburk Man, ronsiding of B and de.

Mezsagilt MET Frasmssised: WEEN
Microcoft MET Framsuce: KGEN
Microsoft MET Fromonor RGEM
Misrozcft MET Fromework KGEM

Fimgisters the plathorm mith 2l avalable Mre Che.

Maruual | el Serim
Dirablad Local Syatiin
Dicshiad Local Syctam
Aubomtic (o Local System
uomatic (B Lesal Syatbem
M=rusal Lecal Service

Eaterniod A Slaskad f

Figure 6.7: Check that the service is running

If we need to make changes to the configuration, we need to use the
regedit.exe tool, perform the changes, and restart the service.

The key to look for 1s
HKLM\SYSTEM\CurrentControlSet\Services\hsflowd\Parameter
s, as shown:

& Reyisiry Edilur

=] [Hame | Type _Data

& A% {Defaut) REG_5T {value rot set)
w 45| Descrintion REG 5T sFiow agent providing host and network supcort
* 4| oxsplavame REG.SZ Host: sFiow Agent
WalFrrnernrnl BIFG_FW0an e NN ()
T 28| ImagePath PG _EXPAND: 52 "{C+\Program Files|Host sFlow Project|Host sk Agentifsflow. .
25| Objctilame REG_ST LocalSyctem
| St REC_DWonD 00000002 (=)
T REC_DWonD T-00000010 {16}

i) irsp

®-). IKEEXT

C Inetaccs

= intelide

= inbelpgem
Inatdma

& IPEUSEnUm
TpFikerDriver

- inhipsec

IFMIDRY

IFNAT

is2pnp

iSesirt

khdclass

Kbdted

Fanyles

el

LRI TR 3

[-
] S—] r
ComputerfHKEY_LOCAL MACHINE|SYSTEM) CurrentControlSetiservices| haflovwd

Figure 6.8: Changing parameters using regedit

As can be seen, the parameters for the IP address for the target are stored in
the Parameters group of Registry Keys:

' Reyislry Editur

+

Catching network flows on Linux and UNIX systems

Having covered Windows, let us now explore flow capture on Linux and
UNIX systems, which offer additional flexibility. Given its conception as a
server-type operating system, Linux and UNIX platforms offer a wider
choice of flow exporters. The above-described flow can be used and run to

Fie Edt View Favortes Help
3

ForkCache a
Fs_Rec

Fleperds

Qg0 3k
GoogieChromeslevat

IEEtwColectorServic
rsp

IKEEXT
Ietaccs
initefide
intelpprm
inabdma
IPEUSERas
IpFitedDeiver
iphipsve
IEMIDRY
IFHAT
aprg
iScsPrt
kbddlazs
kbdhad
Favylso
[T

ol — ol

ComputeriFKEY_LOCAL MACHINESYSTEMICurentControtSat| servicesihsflowd|Parameters

{Def k)

28] collechor

aib| C'GSU

ol pnlinglnterual
Tl ¢ amprlingP ate

Figure 6.9: Checking current parameters from regedit

| Type

REG_SZ
REG 5Z
REG_ST
RFiG_THRCRT
REG_DWCRD

Dt

[waue not st
10.1,30.220

off

M NINNNN4 ()
00000100 {256)

export flows using the sFlow protocol.

Pre-built binaries for various CentOS and Red Hat-derived versions are
available on the https://github.com/sflow/host-sflow/releases path, and
installation is very easy, like downloading it with wget and installing.

As example, for CentOS7 we could do (as root user):
Download the package on the system

wget https://github.com/sflow/host-
sflow/releases/download/v2.0.53-1/hsflowd-centos7-

2-9. 53-10X86_64o rpm

Install the package

https://github.com/sflow/host-sflow/releases

sudo rpm -i hsflowd-centos7-<latest>.x86_64.rpm
Enable the service provided by the installed package
sudo systemctl enable hsflowd
Then you adjust parameters in /etc/hsflowd. conf file setting something
like:
sflow {
collector { ip=10.1.30.210 udpport=6343}
pcap { speed=1G-1T}
tep {}
system {}

}

The tcp {} parameter means to measure TCP round-trip-time/loss/jitter,
the speed=1G-1T simply states to check all network interfaces. The
system {} parameter sets up the monitoring of systemd cgroups.

All other Linux and Unix distributions installation and configuration steps
are quite similar.

Alternatively, given that we are using a straight host (probably a VM), the
Linux distribution provided and maintained version of softflowd should be
fit for the job, unless we are using VLANs on the system; in that case, it
would be better to use the specially crafted version described in Chapter 4,
Implementing Flow Export on Layer 2 Devices.

On Debian 11, it is very straightforward. You just do (as root user):

apt install softflowd

Then edit /etc/softflowd/default.conf which should look like:

The interface softflowd listens on. You may also use
"any" to listen

on all interfaces. Mandatory.

interface="any'

Further options for softflowd, see "man softflowd" for
details.

You should at least define a host and a port where the
accounting

datagrams should be sent to, e.g.

options="-n 127.0.0.1:9995"

You may override the control socket location (-c) if
you really want to.

Do not override the pid file location (-p).
options='-n 10.1.30.210:2056 -v 10'

On CentOS and other Red Hat-based distributions, you should probably look
for a trusted RPM repository that provides pre-built packages to install or
revert to building them yourself (the package source contains hooks to be
used by rpmbuild).

In any case, the installation and the configuration of both hsflowd or
softflowd should be performed by an experienced system administrator with
root privileges on the system.

Conclusion

In this chapter, we have seen how to prepare host systems to export flow
data to a collector. This is a bit against the philosophy of the
NetFlow/IPFIX/sFlow working model, where the network is monitoring
itself, but in some cases it is the only possible solution to receive traffic
flows from systems, like these running on VPCs in cloud providers.

In the next chapters, we are going to show how to implement a flow
collector and ingest its data on big-data platforms for analysis.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 7

Implementing Flow Export on
Virtualization Platforms

Introduction

In this chapter, we will examine our options for catching network flows on
hardware virtualization platforms. Nowadays, most computing stuff is
running inside some form of VM or container inside a data center. Gone are
the times when we had the luxury of having a dedicated physical machine
for an application or a database.

Nonetheless, this does not impact our ability to capture the flows on the
networks connecting them. Sometimes, capturing traffic at the L3 level is
more than enough; sometimes, you need to delve into higher details; thus,
you work at the virtualization platform level.

Structure

In this chapter, we will discuss the following topics:
e SDN and its importance in modern virtualization

Open vSwitch

Catching flows on VMware distributed virtual switches

Catching flows on Proxmox VE 7.x/8.x

Catching flows on Canonical MicroStack

Objectives

The chapter focuses on solutions for implementing flow export on
virtualization systems like VMware and Proxmox, which can give you
network visibility in traffic not crossing the network infrastructure (imagine
traffic between different virtual machines on the same hypervisor).

SDN and its importance in modern virtualization

Software Defined Networking (SDN) is a modern networking architecture
that decouples the control plane (the part that makes decisions about where
traffic is sent) from the data plane (the part that actually forwards traffic to
the selected destination). This separation allows network administrators to
programmatically manage, configure, and optimize network resources,
making networks more flexible and easier to manage.

The key concepts in SDN are as follows:
e Control plane vs. data plane:

o Control plane: This is responsible for making decisions about
where packets should be sent within the network. It handles routing
protocols, network topology, and policies.

o Data plane: Also known as the forwarding plane, this is responsible
for the actual movement of packets based on the decisions made by
the control plane.

e SDN controller: The SDN controller is the central component of the
SDN architecture. It acts as the brain of the network, centralizing the
control logic that was traditionally distributed across the devices in the
network. The controller communicates with network devices using
standardized protocols (like OpenFlow) to manage the flow of traffic.

e Southbound APIs: These are the communication protocols and
interfaces between the SDN controller and the networking hardware
(switches, routers, and so on). The most common protocol used is
OpenFlow, but other protocols like NETCONF, Border Gateway
Protocol (BGP), and Open vSwitch DataBase (OVSDB) can also be
used.

e Northbound APIs: These are the communication interfaces between

the SDN controller and the applications running on top of the SDN
environment. Northbound APIs allow network administrators to write
programs that automate and optimize network behavior. These APIs
enable applications to request and consume network services in a more
abstracted manner.

Virtualization and abstraction: SDN allows for network virtualization,
where the physical infrastructure is abstracted and treated as a virtual
network. This abstraction allows for greater flexibility in managing
network resources and enables features like network slicing, which
allows multiple virtual networks to run over a single physical network.

Let us now understand the working of SDN:

Decoupling control from data: In traditional networking, each device
(for example, a switch or router) has its own control plane, which
decides how to forward traffic. In SDN, this decision-making process is
moved to a centralized SDN controller. The controller has a global view
of the network, enabling more efficient and holistic decision-making.

Centralized control: The SDN controller uses its global view of the
network to make intelligent decisions about traffic flow. It can
dynamically adjust traffic paths, apply policies, and optimize network
performance based on real-time network conditions.

Programmability: Network administrators and applications can
program the network behavior via the SDN controller. This
programmability enables automation of complex tasks, such as load
balancing, traffic engineering, and security enforcement. For example, if
a particular path in the network becomes congested, the SDN controller
can dynamically reroute traffic to less congested paths without manual
intervention.

Communication via APIs: The SDN controller communicates with the
underlying network devices using southbound APIs. For example,
through the OpenFlow protocol, the controller can instruct a switch on
handling specific types of packets. Similarly, applications can interact
with the SDN controller via northbound APIs to request network
resources or monitor network performance.

Dynamic and adaptive networks: One of the primary benefits of SDN
is the ability to create dynamic, adaptive networks that can respond to

changing conditions in real-time. For example, in a cloud environment,
SDN can automatically provide new network resources as virtual
machines are spun up or down, ensuring optimal performance and
utilization of network resources.

Let us now understand SDN architecture:

Application layer: This layer consists of applications that run on top of
the SDN controller. These applications might include network
monitoring tools, security applications, or services that automate
network configurations. They interact with the SDN controller through
northbound APIs.

Control layer: The control layer is where the SDN controller resides. It
acts as the intermediary between the applications in the application layer
and the physical or virtual network devices in the infrastructure layer.

Infrastructure layer: This layer includes physical and virtual network
devices like switches, routers, and firewalls. The SDN controller
controls the infrastructure layer and communicates with these devices
via southbound APIs.

The benefits of SDN are as follows:

Flexibility: SDN provides the ability to adapt the network dynamically
based on current requirements. This flexibility is particularly valuable in
environments like data centers, where traffic patterns can change
rapidly.

Centralized management: With a centralized control plane, SDN
simplifies network management. Administrators can manage the entire
network from a single point of control, which is more efficient than
managing each device individually.

Cost efficiency: By decoupling the control plane from the data plane,
SDN allows the use of less expensive commodity hardware for network
devices, reducing capital expenditure.

Enhanced security: SDN provides the ability to enforce consistent
security policies across the network. The centralized control plane can
apply security policies dynamically, based on the overall state of the
network.

Automation and orchestration: SDN enables the automation of many

network management tasks, reducing the likelihood of human error and
increasing operational efficiency. For instance, network resources can be
automatically provisioned or de-provisioned based on demand.

e Scalability: SDN can easily scale to manage large networks. The
centralized nature of SDN makes it easier to add new devices, manage
traffic, and enforce policies consistently across a growing network.

Some use cases of SDN are as follows:

e Data centers: SDN is widely used in data centers to manage and
optimize network resources, automate provisioning, and improve
security.

¢ Cloud networking: SDN helps cloud providers manage their networks
more efficiently, enabling network slicing and multi-tenant isolation
features.

e WANs: SDN is used in SD-WAN solutions to manage wide-area
networks more flexibly and cost-effectively, optimizing traffic across
multiple connections.

e Security: SDN can enforce dynamic security policies, segmenting the
network in real-time to respond to threats or changing conditions.

The challenges of SDN are as follows:

e Complexity: While SDN simplifies network management in many
ways, it can introduce complexity in terms of initial setup and
integration with existing infrastructure.

e Interoperability: Ensuring that different vendors’ SDN solutions work
together can be challenging, as not all devices or software may fully
support open standards like OpenFlow.

e Security: The centralized control plane in SDN can become a single
point of failure or target for attacks (just try to think of the effects that a
DDoS attack could have on it), so it is crucial to secure the controller
and its communication channels.

SDN represents a paradigm shift in how networks are designed, managed,
and optimized. By decoupling the control plane from the data plane and
centralizing network management, SDN provides unprecedented flexibility,
scalability, and efficiency, particularly in dynamic environments like data
centers and cloud networks. While SDN introduces some new challenges, its

benefits make it a powerful tool for modern network infrastructure.

That said, it appears immediately clear how network virtualization will
coexist with server virtualization, whatever form of virtualization is chosen.

Some vendors, like Broadcom (formerly VMware), developed proprietary
solutions like NSX, although other virtualization solutions (like Proxmox,
OpenStack, and Docker) switched to using the open-source solution Open
vSwitch.

Open vSwitch

Building on SDN’s flexibility, Open vSwitch provides a practical
implementation for virtualized networks. Open vSwitch (OVS) is a highly
programmable, multilayer virtual switch (a switch operating across multiple
network layers, handling both L2 and L3 traffic) widely used in SDN
environments. It is designed to enable network automation through
programmatic extensions while supporting standard management interfaces
and protocols. OVS operates as a virtual switch within a virtualized
environment (such as a hypervisor like KVM or Xen). It allows VM on a
host to communicate with each other, as well as with the physical network,
by managing and directing network traffic within the virtualized
environment. OVS is designed to work across multiple virtualization
platforms, including Linux-based systems, making it versatile for various
deployment scenarios.

OVS 1is an open-source project, which means it is freely available and
maintained by a community of developers. It is also integrated into many
Linux distributions and supported by major cloud and virtualization
platforms.

The key features of OVS are as follows:

e Flow-based switching: OVS uses a flow-based model where network
traffic is categorized into flows. These flows are defined by a set of
packet fields and actions, allowing for fine-grained control over how
traffic is handled.

e Support for SDN protocols: OVS supports standard SDN protocols
like OpenFlow. This enables the switch to interact with SDN
controllers, such as OpenDaylight or ONOS, for centralized network

management and control.

e Advanced networking features: OVS includes support for 802.1Q
VLAN tagging (VLAN tagging isolates traffic between VMs on the
same L2 broadcast domain)., QoS policies, ACL, network tunneling (for
example, GRE, VXLAN), and other advanced networking features
typically found in physical switches.

e Programmability and automation: OVS can be configured and
managed programmatically through its command-line tools and APIs,
allowing for high levels of automation in SDN environments.

e Distributed switching: When used in conjunction with an SDN
controller, OVS can be part of a distributed virtual switch architecture,
where multiple OVS instances are managed as a single logical switch
across multiple hosts.

Let us now learn more about the use of OVS in SDN Networks:

e Integration with SDN controllers: In an SDN environment, OVS is
typically controlled by an SDN controller using the OpenFlow protocol.
The controller provides a centralized point of control, enabling
administrators to manage the network through software rather than
configuring each switch individually,. The SDN controller
communicates with OVS instances on various hosts, installing flow
rules that dictate how traffic should be forwarded, dropped, or modified
based on network policies.

e Virtual networking in data centers: OVS is extensively used in data
centers to manage virtual network infrastructure. It allows for the
creation of complex network topologies, such as overlays and tunnels,
that connect VMs across different physical hosts, while maintaining
isolation and security between tenants. It also supports dynamic network
provisioning, where new network services can be deployed and scaled
without requiring physical changes to the underlying infrastructure.

e Network Function Virtualization (NFV): In NFV environments, OVS
can be used to connect various Virtual Network Functions (VNF) such
as firewalls, load balancers, and routers. By managing these connections
programmatically, OVS allows for rapid deployment and
reconfiguration of network services. OVS's ability to handle high-
performance packet forwarding and provide detailed flow monitoring

makes it ideal for NFV deployments.

Overlay networks: OVS supports various tunneling protocols (for
example, VXLAN, GRE) that enable the creation of overlay networks.
These overlays allow for scalable network segmentation, where each
tenant in a multi-tenant environment can have its isolated network, even
if they share the same physical infrastructure. The SDN controller
manages these tunnels, ensuring that traffic between tenants remains
isolated and secure.

High availability and scalability: In cloud environments, OVS can be
used to create resilient, scalable networks that adapt to changing
workloads. For example, OVS can be part of a network configuration
that automatically adjusts to the addition or removal of VMs,
maintaining consistent network performance and connectivity. Its ability
to distribute traffic across multiple paths and handle failover scenarios
contributes to the reliability of cloud-based services.

The benefits of using OVS in SDN are as follows:

Flexibility: OVS's programmability allows for highly customized
network configurations tailored to specific needs, making it adaptable to
various use cases, from simple network segmentation to complex multi-
tenant cloud environments.

Centralized management: When integrated with an SDN controller,
OVS allows for centralized network management, reducing the
complexity of network operations and enabling rapid deployment of
new services.

Cost efficiency: Being open-source and designed to run on standard x86
hardware, OVS provides a cost-effective alternative to proprietary
switching solutions, especially in large-scale virtualized environments.

High performance: OVS is optimized for performance, with features
like Data Plane Development Kit (DPDK) integration, which can
significantly increase packet processing speeds, making it suitable for
environments with high network traffic demands.

Interoperability: OVS’s support for standard protocols and integration
with various virtualization platforms ensures that it can operate
effectively in a wide range of environments, providing consistent
performance and functionality.

OVS is a powerful tool in the SDN ecosystem, providing the flexibility,
programmability, and advanced features necessary to build dynamic,
efficient, and scalable virtual networks. Its ability to integrate with SDN
controllers and support complex networking scenarios makes it an essential
component in modern data centers, cloud environments, and NFV
infrastructures. By leveraging OVS, organizations can achieve greater
control over their network infrastructure, automate network management
tasks, and improve overall network performance and reliability.

Besides OVS, container-based solutions (such as Docker and Kubernetes)
make use of several alternatives, both commercial, opensource and hybrid
solutions like:

e Project Calico (https://tigera.io/project-calico)

e Flannel (https://github.com/flannel-io)
Additionally, both OVS and Calico support NetFlow/IPFIX flow export!

Catching flows on VMware distributed virtual switches

VMware (now property of Broadcom) is one of the most used and well-
known hardware virtualization platforms. Its virtualization capabilities go
beyond CPU and server only and started including full network
virtualization by means of their NSX solution. This SDN solution, due to its
cost and complexity, is not yet so widespread and could be the topic of a
book itself. What is certain 1s that VMware distributed virtual switches have
been there with the capability to export IPFIX data since VMware and ESXi
5.1! So, configuring a distributed virtual switch (DVS) to send data to a
NetFlow/IPFIX collector has become a quite easy activity.

The prerequisites are as follows:
e Ensure that you have administrative access to the vCenter Server.
e Verify that the DVS is created and configured.

e Ensure that your IPFIX collector is set up and ready to receive IPFIX
data.

Let us now go over the following step-by-step configuration steps:
1. Log in to vCenter Server:
a. Open a web browser and navigate to the vCenter Server URL.

https://tigera.io/project-calico
https://github.com/flannel-io

b. Log in with your administrative credentials.
2. Navigate to Networking:

a. In the vSphere Client, click on the Menu icon and select
Networking.

b. In the left navigation pane, expand the data center where your
Distributed Virtual Switch is located.

c. Select the DVS you want to configure.

3. Edit DVS settings: Right-click on the DVS and select Settings | Edit
Settings.

4. Enable NetFlow:
a. In the Edit Settings window, navigate to the Monitoring section.
b. Check the Enable NetFlow box.

5. Configure NetFlow collector:
a. Still in the Monitoring section, you will see the NetFlow settings.
b. Enter the Collector IP Address (for example, 10.1.30.210).
c. Enter the Collector Port (for example, 2056).

d. Optionally, you can set the Observation Domain ID and Active
Flow Timeout (in seconds).

Refer to the following figure:

3

Sattings W NetFlow
llllllllll

Figure 7.1: Configuring NetFlow export on a DVS
It is a common mistake to label IPFIX export as NetFlow by a lot of
software vendors and VMware is no exception. What we are going to
receive from our collector are actually IPFIX flow exports and not
NetFlow ones.

6. In our example, we created two Linux VMs connected to a distributed
vSwitch on VLAN 60, as shown:

e CuxmOoQw -4

Figure 7.2: Ensuring that the two VM can communicate using the DVS

7. The two VM has IP 10.1.60.31 and 10.1.60.17 and they can ping each
other by means of the distributed vSwitch. They run on 2 different ESXi
nodes, so the packets need to get out of one node's physical interface to
reach the other node's physical interface and back. Crossing the
distributed vSwitch, flows are created, managed, forwarded and in the
end, exported to our collector on IP 10.1.30.210 on port UDP 2056 as
we previously configured. Refer to the following figure:

-

2 | 44) Gilberto Persico
Il - : _

y ®
+ 1 DOCKER-NODES
& rrakctl
@ acmm
» Wid-Flowar
¢ VMISPL
PO NMISPE
I VMIEPE
’ VM-SR
- i@ vma-Prod
+ 1 BACKEND

&7 WINLAFTOR
+ L LAPTOR

Q @con ¥

Figure 7.3: Ensuring that the DVS is correctly sending NetFlow packets for traffic between the two
VMs

8. Here we see the NetFlow packets from the distributed vSwitch we
created before and connected the VMs to. If we analyze the received

packets, they are indeed not NetFlow packet, but IPFIX packets even
containing undisclosed elements, as shown:

¥ O geaHOEROSIOE ¥ Lr.C
r

dys peap — o
Fie Edit View Go Capture Analyze Statistics Telephony Wireless Jook Help
% =
dm @ X & Qe P n__ -
A ip.dst_host == 10.1.30.210 =]
Mo, wian = Source Destination Protocod DST Port Length Indo
4 .10 5.0, 310 10190, 510 Criow AL aky 1450 IDCTX ¥low (1408 bytes) Cos-Dosain-I0- @ [DACa-Tesplate:JCE, 957, Y6H, 350, 360, 63, J63, J6F] [Gata-Teaplate: 364, TES) [Data-Te
k] 18.1.38, 215 J 324 IPFIX flow [252 bytes) Cbs-Domain-10= & [Data-Tesplate:203] (Data-Template:270] [Cata-Tesplate:371)
s 8.1.50. & FELE { =5 bytes) Cos-Oomain- 2
4 10,138, 216 2450 [PFIX flow (1480 bytes) Cos-Dosain-ID=
a 16.1.38. 218 i 334 IFFIX flow [752 bytes) Cbs-Domain.ID=
5 10.1.30. 210 omnisky 1450 IDCIX Tlow (1408 bytes) Cos-Dosaim.IDe
[10.1.39. 218 CRLOW oanisky 334 IPFIX flow | 252 bytes] Cos-Domain-I0=
[10.1.30. 218 CRLOW oanizky 1450 IPEIN flow (1456 bytes) Cbs-Domain.IDs . 265) [Data.Te
[101,30, 210 CRLOW ol Aky 334 IPFIX floa | 25 byled) Cos-Qosala-I0=
[16.1.38. 218 CRLGW oanisky 1858 IPFIX flow (1853 bytes) Chs-Domain-ID= X 3] [Cata-Te
[-3.80.1 10.1.30. 218 CRLOW oanisky 334 IPEIX flow { 352 bytes) Cos-Dosain.TD: 270] [Daxa.T
1 R 6.1 30, 718 EF10w nant sy 1458 IBETX Flow (1458 hytes) Chs.Bosain.fis P, 762, 2] &) foara-Te -
.
+ Intesnet Protecol Verslon 4, Sre: 181,060,118, Dst: 10.1.30.210
+ User Datagram Protocol, Src Port: 12965 [1205%5), Dst Port: canisky |956)
- Bisco MetFlow IPFLX
Wersion: 16
[
v
il
FlowSet i
Teaplace Frasa:
- ETaa 1
SrocAddr: 19.1.68.47
Bithdar: 10.1.68.91
nds {milllieconds)]
Proto (1)
Flow End Beason: Idle timeout {1}
16 Tod: uieh
XTTL: 64
: Egress (1)
mnt Id: @
ivato entry: (VMeare Inc.) Type BOO: Valuo (Rex bytos): 00 61
VAt eatey: (Vaare Tne.) Typs BEE: VAlue (Rae Bites): 00 02
e Prlvale enlry: (Veare Inc.) Type BES: Value (Pux byles]: 08
B
al MR GIfE M oeai 65 fRDINTpaBE M A5 W £ o8 E
3 7401 pd D008 To il bOSMBANLde TR BL 0
18 A7 3F LT OR OR B0 A 08 08 0 Oa 00 SN AR A ' xt =
O 7 avspeap PackEts: 1472 - Displiyed: a6 (3.1%) Prafile: Datsult

Figure 7.4: Inspecting the NetFlow packets from the DVS

They are marked under Enterprise Private entry rows in Wireshark
and can contain custom data that the vendor could decide not to make public.
Nonetheless, in our nice flow example, we see the ICMP traffic from
10.1.60.17 to 10.1.60.31 and all related info.

Catching flows on Proxmox VE 7.x/8.x

Proxmox 1s a very good hardware virtualization platform based on GNU
Linux/Debian and uses KVM to its fullest to provide hardware
virtualization. After Broadcom’s acquisition of VMware and its removal of a
free-tier version, in most use cases, Proxmox easily fills the leftover gap by
VMware, and it 1s evolving into an enterprise solution. Using standard Linux
Networking, we can easily monitor traffic using a software-based solution
that will be described in Chapter 6, Implementing Flow Export on Servers,
section Catching network flows on Linux and UNIX systems.

The solution (already seen in Chapter 4, Implementing Flow Export on
Layer 2 Devices) makes use of a popular Linux software called softflowd,
which performs the activity of analyzing and capturing flows incoming and
outgoing from the operating system on the configured (or all) interfaces, and

exporting the flows by means of NetFlow v5, v9 or IPFIX protocols.

By means of this solution, we can easily track all the traffic, both from VMs
and from LXC Linux Containers.

This software, in your preferred variant, should be installed on all the nodes
in the Proxmox cluster (or, generically, on all the nodes you could be
interested in to analyze in/out traffic).

Catching flows on Canonical MicroStack

During the last few years, Canonical has done a great job keeping up with
the OpenStack platform and community and created several interesting
useful projects to run your private cloud on premises, like for example
Canonical MicroStack or their own version of OpenStack. OpenStack,
originally a derivative work from NASA Nebula and from Rackspace
platform, is an open-source platform for providing and managing IaaS
platforms. It is, for sure, a virtualization platform, but with a different
concept. Normally, in a data center, you have the 2 big database machines in
high availability (HA), a bunch of web servers, and that accounting
platform; shortly, you manage each server (or VM once it is virtualized)
singularly.

The cloud concept (on which [aaS platforms are based) is rather different.
You do not have a special system to handle or to care. Imagine you are
dealing with a herd of cows, and you do not have a special cow. They are
brought to life by providing, managing, and removing the customer needs
(like Amazon or Azure do). The TaaS manager creates templates of systems
with standard capabilities (standard number of CPUs, standard memory size,
standard storage) and so on.

The OpenStack orchestration software components will use a networking
control plane to deal with its architecture of nodes (which the guest
machines will never see) while the VMs will rely on the external networking
to be reachable from and to reach the Internet.

A typical OpenStack farm could be built by dozens of hosts. The suggestion
1s to install softflowd on all the OpenStack nodes and also configure sFlow
on the L2 switching side if available. In this way, you should be able to track
all incoming and outgoing traffic into and out of the OpenStack

infrastructure.

You can choose to monitor both the control plane to check what is really
happening on your laaS platform (and look for spurious or dangerous fake
Vxlan Tunnel EndPoints or VTEPs) for VXLANSs) or step further into
details about what customer VMs are doing by means of monitoring also
external networking because you have chosen to provide your customers an
extra level of security. Based on standard Linux networking, we have the
same monitoring capabilities already described in the previous paragraph
about monitoring Proxmox; you will see in the succeeding chapter how to
monitor the networking of a generic UNIX/Linux server. it is strongly
advised to use the softflowd solution; it has a better trade-offs about CPU
utilization, detail level, and provided info.

Conclusion

In this chapter, we have seen different concepts, from the SDN to Open
vSwitch to virtualization, VMware, Proxmox, OpenStack, VXLAN, VTEPs,
and so on. It seems to be a lot of stuff, but keep in mind just the important
concepts and our target. We need to know how these infrastructures work
because we want to have the best possible visibility on them. They run the
core business of our company, so having aid in monitoring the infrastructure
itself, is not a bad idea!

CHAPTER 8
Ingesting Data into Clickhouse and
Elasticsearch

Introduction

By this point, we have examined most of our opportunities to view network
traffic from most of the datacenter. Routers, firewalls, switches, and
virtualization platforms are hopefully all configured now to produce and
send the flow data they can see over a network. But to make practical use of
it, we need something to receive it, store it, and transform it in a helpful way.
To explain in a better and more practical way, we opted for mostly open-
source software due to their power and effectiveness.

Structure

In this chapter, we will discuss the following topics:
* Choosing and installing a flow collector
* Clickhouse
* Elasticsearch

Objectives

The chapter shows the user how to ingest raw flow data into more usable and

structured analysis platforms like Elasticsearch and Clickhouse (open-source
high-performance OLAP).

Choosing and installing a flow collector

To make practical use of the flows sent via network (using one of the
protocols described in Chapter 7, Implementing Flow Export on
Virtualization Platforms), we need software that receives them and stores
them in a helpful way. This kind of software is called flow collector. There
is plenty of choice, both in the commercial and the open-source licensed
ones, and since it is written, we will make use of it throughout the book.

The software 1s a commercial one, but there is a free version that can be used
for unlimited time. Its main limitations are that it will use just one of the
cores available on your CPU and that is limited to NetFlow v1, NetFlow v5
and sFlow protocols, which are more than enough for the scope of this book.

The software 1s named FlOwer and can be downloaded at
https://fl0wer.me/download/

Fl0wer

FlOwer is a NetFlow/IPFIX/sFlow collector and platform that was conceived
for performance and features. Normally, it can handle the reception of tens
of thousands of flows per second (fps) and store them in a convenient CSV
way, for further ingestion in your favorite analytics platform, be it an OLAP
like Clickhouse, a classical SQL database like MySQL, or big data analytic
solutions like OpenSearch, Splunk or Elasticsearch. Ingestion job runs as a
separate process, and the traffic flows can be digitally signed for non-
repudiation on WORM storage.

There are several differences with other software, such as:

e Network probabilistic application recognition, which uses statistical
methods to identify applications from flow patterns. Pre-classification of
network traffic.

e Buildup of a flow matrix table.

e Pre-identification of traffic with network bad actors.

e Pre-identification of network scans, both horizontal and vertical.
e REST API for integration with other software.

https://fl0wer.me/download/

Along with many others that you will be able to discover reading the
provided manual. We will have the opportunity to see some of them
throughout the other chapters of this book.

Installing FlI0wer and UDP samplicator

FlOwer is very easy to install. Just choose your Linux distribution and
download the appropriate package. As time of writing of this book, the
following Linux distributions are supported:

e RedHat/CentOS 7.x, 8.x and 9.x
e Debian 8.x, 9.x, 10.x, 11.x, 12.x

The FlOwer platform is split in 3 packages: the collector itself, the
development environment (containing sources for all the open-source parts
of the platform, including the Python GUI and CLI) and the Run Time
Environment (RTE), containing most used tools and a full Python runtime
environment with all modules normally used by the GUI, CLI and data
pumper. It is strongly suggested to install all of them on your collector
machine. Once the platform specific package is downloaded, use the specific
dpkg or rpm command to install it. During the installation, the fl0wer user
and group are created (once started as root, the software will switch to
flOwer user for running), everything is installed in the /opt/fleOwer
directory-tree and the following parameters must be set in
/etc/security/limits.conf file:

* - nofile 131072

* - nproc 4096

* - stack 65536

* - memlock unlimited

* hard rtprio 99

* soft rtprio 99

Proper configuration should be adjusted in

/opt/flower/etc/flower. conf file for storage of data blocks, listening
ports, and so on, for which the user manual 1s best fitted to check. A reboot
of the system is suggested.

If you want to experiment with more than one flow collector, you can make
use of the fine UDP samplicator software available at:

https://github.com/sleinen/samplicator

In our examples, we will make use of the samplicator, so you should end up
with something like this:

root@syslog:~# netstat -anp | grep -i udp

udp © ©0 0.0.0.0:2056 0.0.0.0:* 447/samplicate
udp © © 0.0.0.0:2057 ©0.0.0.0:* 27742/fl0werd

udp © ©0 0.0.0.0:6343 0.0.0.0:* 449/samplicate
udp © ©0 0.0.0.0:6344 0.0.0.0:* 27742/fl0werd

As you see, in our configuration, fl0werd is listening on UDP ports 2057 and
UDP port 6344. The real ports to which we forward our traffic are UDP

2056 (NetFlow/IPFIX) and 6343 (sFlow V5), which are managed by the
UDP samplicator with a command line like:

root@syslog:~# ps -efa | grep samplicate

root 447 1 © Augoee6 ? 06:14:12
/usr/local/bin/samplicate -f -p 2056 -b 262144 -S -n
10.1.30.210/2057 10.1.60.136/2056

root 449 1 0O Augoe6 ? 03:26:27
/usr/local/bin/samplicate -f -p 6343 -b 262144 -S -n
10.1.30.210/6344 10.1.60.136/6343

If you noticed, all flow protocols are UDP based, thus you can configure the
flow-receiver with an instance of the UDP samplicator, forwarding (with all
original headers) the traffic flows to multiple flow-collectors.

So, the local installation of samplicate will forward incoming traffic to local
port 2056 on two hosts: localhost on port 2057 and another host. The same
will happen for port 6343. Since the content and the original headers are
preserved, you are getting the flow traffic on both the FlOwer installation and
onto another host of our choice, but you can add as many as you want.

Clickhouse

Clickhouse is an open-source Online Analytical Processing (OLAP)
database that was conceived and developed by Yandex (if you have never
heard of them, imagine the Russian version of Google). An OLAP database
i1s a specialized database optimized for fast, multidimensional analysis of

https://github.com/sleinen/samplicator

large volumes of structured data to support complex queries and decision-
making, though performance varies with workload and configuration.; at the
cost of losing some features versus relational database, can be hundreds or
thousands of times faster than a classical relational database when coming to
searching or reporting. We will choose it because it scales very well, running
from low-power Linux boxes like Intel J1900 based System On a Chip
(SOC) to high performance server clusters, it is open-source, it is very well
documented, there is commercial support and it is really, really fast.

An OLAP database is a type of database optimized for querying and
reporting, rather than for transaction processing. It is designed to handle
large amounts of data and support complex queries that are typical in data
analysis and business intelligence (BI) applications. OLAP databases are
used to discover patterns, trends, and insights into data by enabling fast,
multi-dimensional analysis across large datasets.

The performance depends on the way an OLAP works and the drawback of
Clickhouse (and most other OLAPs) is that the DELETE or ALTER
operations are not possible once the data is stored (or better, is possible but
have a very high cost in terms of performance). This is quite different from a
traditional relational SQL environment such as MySQL (although there is
even a MySQL compatibility mode in Clickhouse, so you can reuse it to
rehost applications through it), which, to preserve its DELETE and ALTER
capabilities, is forced to store data in a completely different way.

However, flow-traffic data is basically time-series data, which needs no
modification. We just delete older blocks of data that we are no longer
interested in, so it is a perfect fit for our analysis. Plus, all common SQL
statements are available, so we can build and fine-tune all our queries, and
they will always be very fast.

Ingesting data into Clickhouse

As previously stated, despite its core being written in C language, FlOwer is
also a platform that makes strong use of Python code, for its GUI and CLI
environments and the flow pumper software. Yes, there is a Python script
that can be run in the background, located in /opt/flOwer/flowpumper
named pumper.py that is already supporting multiple ingesting platforms
like:

* Clickhouse

* MySQL

* Elasticsearch

* OpenSearch

* Syslog
So, if you check the script, you can provide the parameters for the database
using command line options, or prepare a pumper.ini file to be stored
inside the same directory of the script, something like:
root@syslog:/opt/flower/flowpumper# cat pumper.ini
[main]
ch_server = 10.1.20.17
ch_port = 8123
ch_user = flower
ch_password = floOwerrox
my_server =
my_port =
my_user =
my_password =
elk_server =
elk_port =
elk user =
elk _password =
elk_opensearch =
k_server =
k_port =
k_user
k_password
i_server =
i_port =
i_user
i_password
s_server =
s_port =
datapath = /opt/flOwer/data/bricks/

nodelete =

Clearly, ch_ parameters are related to Clickhouse, my_ parameters are
related to MySQL, elk_ parameters are related to the Elasticsearch stack
(ELK), k_ parameters are related to Apache Kafka (future implementation),
i_ parameters are related to InfluxDB (future implementation) and s_
parameters are related to syslog sending.

You can easily run it using the screen system tool to detach it from the
running console and have it running in the background. It can ingest multiple
different platforms at the same time.

Once run, you should see something like:

31/08/2024 19:09:03 Clickhouse - Processing flows file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132200.csvVv

31/08/2024 19:09:04 Clickhouse - inserted flows data in
Clickhouse, it took: ©.7160137337632477 seconds

31/08/2024 19:09:04 Clickhouse - flows processed from
file: /opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132200.csvVv

31/08/2024 19:09:04 Removed file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132200.csv

31/08/2024 19:09:04 Removed file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132200.csv.sha256

31/08/2024 19:09:04 Clickhouse - Processing flows file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132251.csv

31/08/2024 19:09:05 Clickhouse - inserted flows data in
Clickhouse, it took: ©.9544245740398765 seconds

31/08/2024 19:09:05 Clickhouse - flows processed from
file: /opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132251.csv

31/08/2024 19:09:05 Removed file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-

20240817-132251.csv

31/08/2024 19:09:05 Removed file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132251.csv.sha256

31/08/2024 19:09:05 Clickhouse - Processing flows file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132404.csv

31/08/2024 19:09:05 Clickhouse - inserted flows data in
Clickhouse, it took: 0.6483424119651318 seconds

31/08/2024 19:09:05 Clickhouse - flows processed from
file: /opt/flewer/data/bricks/flowbrick-tid-3342849792-
20240817-132404.csv

31/08/2024 19:09:05 Removed file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132404.csv

31/08/2024 19:09:05 Removed file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240817-132404.csv.sha256

If you want to check if real data is incoming, you just connect to the
Clickhouse server and do something like:

[unixman@clickhouse ~]$ clickhouse-client

ClickHouse client version 24.7.3.42 (official build).
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 24.7.3.
Warnings:

* Linux transparent hugepages are set to "always".
Check /sys/kernel/mm/transparent_hugepage/enabled
clickhouse.ip6net.me :) USE FLOWER;

USE FLOWER

Query id: 1a46d8b3-dd72-4459-8da4-a%90ebeb74a77

ok.

© rows in set. Elapsed: 0.002 sec.
clickhouse.ip6net.me :) SELECT COUNT(*) FROM FLOWS;
SELECT COUNT(*)

FROM FLOWS
Query id: aef8307a-c6d1-419c-80d6-dc46655e2aff

——COUNT()—

1. | 83372000 | -- 83.37 million
| |

1 row in set. Elapsed: 0.010 sec.

As you can figure out, there are more than 83 million of flows stored for a
26 days period in the lab test network, which is probably more complex than
a small company but much simpler than a real production datacenter. For
these flows, the occupied disk space is around 2G, which is really peanuts
compared to the space that would be used by a traditional SQL (non OLAP)
database like Oracle or MySQL.

You can use DBeaver as a free and simple GUI tool to perform your queries
from normal Windows clients, as shown:

) DBeaver 22.02 - FLOWS - ®
File Edit Navigate Scarch SQLEditer Databsse Window Help
¢ v‘ ¥ % | Jsou ~: [Commit [Rollback - @ Ao - 1012017 ~ Bl default i3 g vi Qv Q ®|@
% Database Navigator X [Projects = B =,1012017 [] <101.2017>Seript S FLOWER ER FLOWS X =B
¢-Cl=¢t§ m Properties | I Data| % ER Diagram p 10.1.2017 FLOWER Tables ~ B FLOWS
[Enter a part of object name here | v -
v |lg 1012017 - 10.1.20.17:8123 EBrLows |25 ORI i
v [FLOWER = 123 FLOWID if2| 1231P_VeT | nec IP_SRC_FLOWEXPORTER T3| @) FLOW_DATE RECEVED 17| 123 FLOWSEQUENCE T1|recIP_PROTOCOL b |
M EghgiSQUER\ES @ 3379 1,723,568,454,423, 346 4 1013021 2024-08-13 17:30:46.000 9510 tep B .,%’
R EVENTS 41 3380 1,723,611,071,531,999 4 1013021 2024-08-13 17:30:46.000 9510 tcp 1723560 | &
R FLOWS 196 g ﬂ 1,723,566,963,830,930 4 1013021 2024-08-13 17:30:46.000 9510 udp Py
£ HTIPREQUESTS £ 3382 1,723,566,583330,729 4 1013021 2024-08-1317:30:46.000 9510 udp E@
£ PROCESSES © 3383 1,723,567,134,428,908 4 1013021 2024-08-13 17:30:46.000 3510 udp
R SOCKETS 3384 1,723,566,753,429,202 4 1013021 2024-08-1317:30:46.000 9510 udp i
Views "3385] 1,723,568,621,566,318 4 192.168.1.20 2024-08-13 17:30:46.000 1,301,641 udp i)
Procedures E],?z},sswglzawﬁs 4 1013021 2024-08-13 17:30:46,000 9510 icmp o
Data Types 3387 1,723,567,372, 772,430 4 182.168.1.20 2024-08-13 17:30:47.000 1301645 udp
INFORMATION_SCHEMA 3388 1,723,566,815,836,662 4 132.168.1.20 2024-08-1317:30:47.000 1301645 udp
default 3330 1,723,568,313,460,452 4 192168..20 2024-08-13 17:30:48.000 1,301,647 udp
information_schema 73390 1,723,568,184,521,944 4 132168..20 2024-08-1317:30:48,000 1300647 udp
> system "3301| 1,723,567,628,422,909 4 192.168.1.20 2024-08-13 17:30:48.000 1,301,643 udp
) 10120194 - 10 3392 1,723,568,324,023,549 4 192168120 2024-08-13 17:30:48.000 1,301,649 udp
10.1.50.100 - 70, 3393 1,723,573,002,574,565 4 1043021 2024-08-13 17:30:49.000 3300 udp
“3394) 1,723,581,509,167,380 4 1013021 2024-08-13 17:30:49.000 3300 udp
73395 1,723,568,547,617,302 4 1013021 2024-08-13 17:30:49.000 3300 udp
2 Project - General x @ = +eo =0 3396 1,723,568,792,456,674 4 1013021 2024-08-1317:30:49.000 3300 udp
3397 | 1,723,568,006,446,617 4 1013021 2024-08-13 17:30:49.000 3,300 icmp
Neme Datasource 3398 1,723,567,183,200,376 4 1013021 2024-08-13 17:30:49.000 3300 icmp
Bookmarks 3399 1,723,576,148,742,702 4 1013021 2024-08-13 17:30:49.000 3300 udp
ER Diagrams T 3400] 1,723,566,616,324.235 4 10.1.30.21 2024-08-13 17:30:49.000 3,300 icmp
Scripts B 34| 1,723,567,731,968,450 4 103021 2024-08-13 17:30:49.000 3,300 tep
P :m': 1792 SR 040 530 7RT FRRTEE L 2024-N2-12 17:2048 (0 230 ten 5 A
|[SE®m=iK < >l utm: s if[200 [3600+ i Rowsi1
ff2 3600 row(s) fetched - 203ms (47ms fetch), on Sep 07, 14:24:17 ”®
CET| en

Figure 8.1: Using DBeaver to browse FLOWER database on Clickhouse
The database created has the name FLOWER and the most used tables are:
* FLOWS
* EVENTS
There are also other tables that will be used when the Agent is completed; by

means of the DESCRIBE command, you can see the fields that are used:
clickhouse.ip6net.me :) describe FLOWS

DESCRIBE TABLE FLOWS

Query id: 5b0a2aad4-dd59-4921-8d47-65176e27b5d5

—hame —type r—default_type——default_expression—
—comment——codec_expression——ttl_expression—

1. | FLOWID | uintes | |
| | | |

2. | IP_Version | uInts | |
| | | |

3. | IP_SRC_FLOWEXPORTER | string | |
| | | |

4. | FLOW_DATE_RECEIVED | DateTime | |
| | | |

5. | FLOWSEQUENCE | uintes | |
| | | |

6. | IP_PROTOCOL | string | |
| | | |

7. | FLOW_START_DATE | DateTime | |
| | | |

8. | FLOW_END_DATE | DateTime | |
| | | |

9. | FLOW_BYTE_DELTA_COUNT | UInt64 | |

10. | FLOW_PACKET_DELTA_COUNT | UInt64 | |

11. | IP_CLASSOFSERVICE | uints | |
| | | |
12. | TCP_CONTROL_BITS | uints | |
| | | |
13. | IP_FLOW_DIRECTION | string | |

14. | NPAR | string | |

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

CATEGORY

SRC_PORT

DST_PORT

SRC_ADDRESS

DST_ADDRESS

XINFO

RULE

SRC_ORGANIZATION

SRC_ISP_AS

SRC_COUNTRYCODE

SRC_REGION

SRC_REGION_NAME

SRC_CITY

SRC_POSTALCODE

SRC_LONGITUDE

SRC_LATITUDE

SRC_AREACODE

SRC_TIMEZONE

String

UIntl6

UIntlé6

String

String

String

String

String

String

String

String

String

String

String

Floate4

Floate4

String

String

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43,

44,

45.

46.

47.

48.

49.

DST_ORGANIZATION

DST_ISP_AS

DST_COUNTRYCODE

DST_REGION

DST_REGION_NAME

DST_CITY

DST_POSTALCODE

DST_LONGITUDE

DST_LATITUDE

DST_AREACODE

DST_TIMEZONE

SRC_FQDN

DST_FQDN

USERNAME

RISK_INDEX

NEXTHOP_ADDRESS

BGP_SRC_AS

String

String

String

String

String

String

String

Floate4

Floate4

String

String

String

String

String

UIntl6

String

String

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

BGP_DST_AS

VLAN_SRC

VLAN_DST

NBAR

FWD_STATUS

SNMP_IN

SNMP_OUT

PLATFORM

PROCESS

PID

COMMAND

DNS_QUERY

HTTP_URL

HTTP_CODE

USER_AGENT

srcPrefix

dstPrefix

srcZone

| string
| uint32
| uint32
| string
| uints
| uintie
| uintie
| string
| string
| uint32
| string
| string
| string
| uintie
| string
| string
| string

| string

68. | dstzone | string | |

69. | outOfMatrix | string | |
| | | |

70. | BidirectionalFlow | string | |
| | | |

71. | IN_PKTS | uintes | |
| | | |

72. | OUT_PKTS | vintea | |
| | | |

73. | IN_BYTES | uintes | |
| | | |

74. | OUT_BYTES | uintea | |
| | | |

L name ' type ' de-Fault_type—l—defau1t_expr‘ession—'-

—comment—'—codec_expr‘ession—'—‘ctl_expr'ession—I

74 rows in set. Elapsed: 0.002 sec.
The EVENTS table is even simpler:

clickhouse.ip6net.me :) describe EVENTS

DESCRIBE TABLE EVENTS

Query id: 6d7fe92a-14fa-4419-bed8-853332bf3946
Connecting to database FLOWER at localhost:9000 as user
default.

Connected to ClickHouse server version 24.7.3.

—hame —type r—default_type——default_expression——comment——cod
ec_expression——ttl_expression—
. | EVENTID | uIntesa | | |

1
|

2. | TIMESTAMP | DateTime | | |

|

3

|

. | LEVEL | string | | | |

4. | CATEGORY | String | | | |
| |

5. | SOURCE | string | | | |
| |

6. | MESSAGE | string | | | |
|

6 rows in set. Elapsed: 0.007 sec.

This is exactly what you can find in the source of the pumper.py Python
script, and this is what will be used for future product developments.
However, you can alter these to fit your needs; it is advised to stick to these
names, which are quite self-explanatory.

By having traffic-flows pumped constantly into an OLAP database, you can
create automations that are quite difficult to create with a closed product.

Elasticsearch

Elasticsearch is a powerful, distributed, and open-source search and
analytics engine designed to handle large volumes of data quickly and in
near real-time. It is part of the Elastic Stack (also known as the ELK Stack,
which includes Elasticsearch, Logstash, and Kibana) and is widely used for
searching, analyzing, and visualizing structured and unstructured data.

The key features of Elasticsearch are:

* Full-text search: Elasticsearch 1s renowned for its full-text search
capabilities. It supports complex search queries such as fuzzy search,
phrase search, and wildcard search, allowing for precise data retrieval. It
also provides features like relevance ranking, synonyms, and language-
specific text analysis.

* Distributed architecture: Elasticsearch is designed to be distributed,
meaning it can run on a cluster of servers, providing scalability and high
availability. Data is automatically divided into multiple shards (smaller
data partitions) and distributed across the nodes in the cluster, ensuring
efficient load balancing and redundancy.

* Near real-time search and analytics: Elasticsearch provides near real-
time indexing and searching capabilities, which makes it ideal for use
cases where immediate visibility into the data is required, such as log
analysis, monitoring, and real-time data analytics.

* RESTful API JSON-based data format: Elasticsearch uses a RESTful
API with data stored in JSON format. This makes interacting with and
integrating into various applications, platforms, and programming
languages easy.

* Schema-free data model: Elasticsearch has a flexible schema design,
meaning it can automatically recognize new fields in documents. This
allows it to accommodate changing data structures easily, making it
suitable for diverse and dynamic data types.

* Advanced analytics: Elasticsearch supports complex queries and
aggregations to perform advanced analytics, such as statistical analysis,
machine learning, trend analysis, and geospatial data queries. These
capabilities are built-in and allow users to analyze large datasets
efficiently.

* Inverted index: At its core, Elasticsearch uses an inverted index, which
is a data structure that maps terms (keywords) to their locations in the
documents. This structure is optimized for fast full-text searches,
enabling Elasticsearch to locate and retrieve relevant documents based
on search queries quickly.

* Integration with the Elastic Stack: Elasticsearch is part of the Elastic
Stack, which also includes Logstash (a data collection and processing
engine), Kibana (a visualization and dashboarding tool), and Beats
(lightweight data shippers). This integration allows for a complete end-
to-end solution for data ingestion, processing, storage, and visualization.

Elasticsearch is a versatile, fast, and scalable search and analytics engine that
is widely used for full-text search, log analysis, real-time data analytics, and
more. Its distributed architecture, real-time capabilities, and powerful query
language make it an ideal choice for businesses seeking insights from large
volumes of structured and unstructured data. As part of the Elastic Stack,
Elasticsearch provides a comprehensive platform for ingesting, processing,
storing, and visualizing data, making it a key tool in the modern data
ecosystem.

Ingesting data into Elasticsearch

As 1n the previous example with Clickhouse, we can use the pumper script
provided with the FlOwer collector. As usual, the Python script can be run in
background and 1is located in /opt/flOwer/flowpumper named
pumper. py that is already supporting multiple ingesting platforms like:

* Clickhouse

* MySQL

* Elasticsearch

* OpenSearch

* Syslog
So, if you check the script, you can provide the parameters for the database
using command line options or prepare a pumper.ini file to be stored
inside the same directory of the script, something like:
root@syslog:/opt/flOwer/flowpumper# cat pumper.ini
[main]
ch_server = 10.1.20.17
ch_port = 8123
ch_user = flower
ch_password = flOwerrox
my_server =
my_port =
my_user =
my_password =
elk_server = 10.1.20.91
elk_port = 9200
elk _user = elastic
elk_password = 7GH6Tgtml1123rtbsdaasixco
elk_opensearch = False
k_server =
k_port
k_user
k_password =
i_server =

i_port
i_user
i_password =
s_server =
s_port =
datapath
nodelete
If pumper. py fails, check logs in /opt/flower/logs and verify database
connectivity.

/opt/flower/data/bricks/

You can easily run it using the screen system tool to detach it from the
running console and have it running in background. As we can see, it can
ingest multiple different platforms at the same time; in our example both
Clickhouse and Elasticsearch 8.15:

08/09/2024 17:35:22 Clickhouse - Processing flows file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240908-031326.cSsVv

08/09/2024 17:35:22 Clickhouse - inserted flows data in
Clickhouse, it took: 0.2310080691240728 seconds
08/09/2024 17:35:22 Clickhouse - flows processed from
file: /opt/flewer/data/bricks/flowbrick-tid-3342849792-
20240908-031326.csvVv

08/09/2024 17:35:22 Elasticsearch - Processing flows
file: /opt/flower/data/bricks/flowbrick-tid-3342849792-
20240908-031326.cSsVv

08/09/2024 17:35:22 Elasticsearch - loaded file:
/opt/flower/data/bricks/flowbrick-tid-3342849792-
20240908-031326.csv - Records: 2000

08/09/2024 17:35:22 Elasticsearch - Fixing up data in
dataframe

08/09/2024 17:35:24 Elasticsearch - flow dataframe fixup
took: 2.023171761073172 seconds

08/09/2024 17:35:24 Elasticsearch - Converted flow
dataframe to dict for ElasticSearch took:
0.12688345508649945 seconds

08/09/2024 17:35:24 Elasticsearch - Pumping flow data to
ElasticSearch to index: flOwer-2024.09.08

08/09/2024 17:35:27 Elasticsearch - Pumping Flows into
ElasticSearch (127.0.0.1:9300) index: flOwer-2024.09.08
took 2.804528950713575 seconds

08/09/2024 17:35:27 Elasticsearch - Result of Flows
pumping was: 2000 loaded documents

To make practical use of the data, simply use Kibana to build your favorite
dashboards and views.

Just point to your properly configure Kibana installation on web port 5601,
as shown:

¢ © D & Discover-Elastic x WSS - a X
«~ O A Notsecure | 10.1.20.91:5601/app/discover#/?_g=(filters:!(},refreshinterval:(pause:!t,value:50000) time:(from:now-24h%2Fh to:now))&_a=(... A} ¥ m = ® ’.h
:8. elastic Q Find apps, content, and more.
= . Discover New Open Share Alerts Inspect () Save

Flower ~ = @ QU Filter your data using KQL syntax ~ Last 24 hours c
QU Search field names =0 Auto interval No breakdown @
v Available fields 74

t | BGP_DST_AS
BGP_SRC_AS

BidirectionalFlow

t
t
t CATEGORY Sep 8, 2024 @ 09:00:00.000 - Sep 8, 2024 @ 09:26:26.231 (interval: Auto - 30 minutes)
t| COMMAND
. . -
t| DST_ADDRESS Get the best look at your search results X
t | DST_AREACODE Add relevant fields, reorder and sort columns, resize rows, and more in the document table
t| DSTCITY
t] DST COUNTRYCODE Take the tour Dismiss
t DSTFGDN FLOW_DATE_RECEIVED (O . Document
t| DSTISP_AS
Sep 0, 2024 @ ©9:19:31.800 BGP_DST_AS © BGP_SRC_AS 8 BidirectionalFlow False CATEGORY NETWORK OPERATION COMMAND None DNS_QUERY Non

DSTLATITUDE e DST_ADDRESS 19.1.36.21¢ DST_AREACODE & DST_CITY None DST_COUNTRYCODE None DST_FQDN 18.1.38.21
%) DST LONGITUDE 8 DST_ISP_AS None DST_LATITUDE -199 DST_LONGITUDE -99 DST_ORGANIZATION None DST_PORT 6,34..

Add a field Rows per page: 100 v 123 45>

Figure 8.2: Browsing FlOwer data in Kibana

Conclusion

In this chapter, we have seen how to receive all the traffic flows data from
the network and ingest it into some tools to use it. Using an OLAP database,
you can quickly analyze your data and build scripts and automation to react
to specific flows. Instead, using an analytics tool like Elasticsearch, you can
drill down quickly inside your traffic flows and understand how things work

better in your network.
In the next chapter, we will dig into ways to analyze traffic.

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 9

Flow Data Analysis: Exploring Data
for Fun and Profit

Introduction

After so much work, from understanding what a flow is, to preparing an
environment for flow data analysis, we can finally explore what is really happening
inside our network.

In this chapter, we will examine two real-world case studies that can prove quite
useful to improve our overall network security posture and have a better
understanding of how we can put flow data at work for us. The first use case is
regarding the DNS traffic, which mostly happens on UDP port 53 of the network
and is the basis for proper working of our network infrastructure. We will see how
simply knowing the source and destination addresses of queries can reveal both
practical problems and security issues. The second use case will show us how to
better hunt (in a large and structured enterprise network) for anomalies in systems
management.

Structure

In this chapter, we will discuss the following topics:
¢ Understanding what we collected

Interacting with Clickhouse

Interacting with Elasticsearch
FlOwer data model
FlOwer RTE

Traffic classification

Data analysis examples
Rogue VTEPs
OUT OF POLICY SNMP

Objectives

The chapter will discuss how we can do interesting analysis of the flow data we are
getting from the network. It will teach the reader to understand better what is
happening inside his network infrastructure, by showing a lot of examples. It will
also give the reader further in-depth knowledge about identifying patterns and
anomalies, and how to detect security threats.

Understanding what we collected

In the previous chapter, we configured our flow collector to store its data both in an
OLAP database (Clickhouse) and in a search and analytics engine like
Elasticsearch. For now, we are creating a data redundancy that can be used in
different ways, and it will be up to you to choose your preferred analysis method.
Let us take these points of view:

e Using Elasticsearch or OpenSearch, you can easily create quick charts and
drill down in data by means of the very useful Kibana web interface

e Using Clickhouse, you can work on a compressed database and you can create
and automate a lot of analysis tasks by means of scripts.

One suggestion is to begin using Elasticsearch/OpenSearch to explore, and then
once you have a good understanding of your network, move to using only the
Clickhouse database, which is way faster and scalable.

Interacting with Clickhouse

As said in Chapter 8, Ingesting Data into Clickhouse and Elasticsearch,
Clickhouse is an OLAP database following the classic client-server model. All data
is stored on a server and we interact with it using clients, which can be clients like
the CLI application Clickhouse-client in the Linux world, the free DBeaver
application with the proper driver, or even using Python scripts (and other
languages, but for us they are out of scope; you can refer to the product
documentation) which, in combination with the Pandas framework are an excellent
tool for our arsenal.

Interacting with Elasticsearch

Elasticsearch and its derivatives like OpenSearch, given their scalability
capabilities and their features in managing big data, are search and analyze engines
that are greatly used for first steps of data analysis, as we can see in the next
paragraphs. They store their data in so-called indexes that can be grouped by index
patterns and queried using the web interface named Kibana, through which you can
easily create wonderful and useful views of your data.

Fl0wer data model

FlOwer is simply a network flow collector and by itself it is not tied to any specific
storage model. Its full focus is on performance, and it is by definition storage
agnostic so that it writes its output to simple CSV text files, that can be easily used
by tons of different applications. In its default configuration, it writes bricks of data
in the folder /opt/flOwer/data/bricks, and in the commercial edition, it can
also write the same in /opt/flOwer/data/worm, which can easily be an NFS-
shared Write Once Read Many (WORM) folder from a dedicated storage or as
example from a GlusterFS WORM folder.

This feature allows the user to store the raw flow data on a readable but immutable
storage (once written, it can only be read). It is useful in environments where
repudiation of data is not an option, typically for big enterprises. The data bricks,
once written, are processed by the pumper process as we have seen in the previous
chapter and loaded into your favorite platform.
In its current implementation, FlI0wer writes two types of data bricks, one about
flows and one about events. Flows are the enriched data flows coming from the
network and it is a very big record to deal with. Events, as the word says, are
meaningful events happening on the network that FlOwer is monitoring and that
deserve attention from the network manager.
The pumper loads these two types of data in different ways depending on the target
engine:
e On Clickhouse, a database named FlOwer is created with two tables:
FLOWS and EVENTS.
* On Elasticsearch, two different indexes are created: fl0wer-yyyy.mm.dd
and netevent-yyyy.mm.dd.

Flows
The following table of the flows is quite simple, and it contains one row for each

flow received by flower from the network:

Column name # Data type Default description
FLOWID 1 UInte4 Unique flow ID generated by FlOwer
IP_Version 2 UInt8 IP version of the flow
IP_SRC_FLOWEXPORTER 3 String IP of the exporter that sent this flow
FLOW_DATE_RECEIVED 4 DateTime |Datetime of reception of this flow by Fl0wer
FLOWSEQUENCE 5 UInt64 Flow sequence number by NetFlow/IPFIX
IP_PROTOCOL 6 String IP Protocol by NetFlow/IPFIX
FLOW_START_DATE 7 DateTime |Datetime of flow start by NetFlow/IPFIX
FLOW_END_DATE 8 DateTime |Datetime of flow end by NetFlow/IPFIX
FLOW_BYTE_DELTA_COUNT 9 |uIntea E‘;{;‘}’:Vrv;ﬁ,gﬁs in the flow by
FLOW_PACKET_DELTA_COUNT 10 |uIntea Egﬁ;‘}’:@;};ﬁ;‘em in the flow by
IP_CLASSOFSERVICE 11 UInt8 IP CoS by NetFlow/IPFIX
TCP_CONTROL_BITS 12 UInt8 For TCP Flows, TCP Flags by NetFlow/IPFIX
IP_FLOW_DIRECTION 13 |String Flow direction according to fl0wer networks
NPAR 14 |String Network probabilistic application recognition
CATEGORY 15 |String Macro category of the flow
SRC_PORT 16 |UIntleé Source port by NetFlow/IPFIX
DST_PORT 17 UIntlé6 Destination port by NetFlow/IPFIX
SRC_ADDRESS 18 String Source address by NetFlow/IPFIX
DST_ADDRESS 19 |String Destination address by NetFlow/IPFIX
XINFO 20 String Extra info by FlOwer traffic rules/checks
RULE 21 String FlOwer traffic rule matched by the flow
SRC_ORGANIZATION 2 String (g)ggg:é:egifo;vzifl :lltl)el:es)ource address from
SRC_ISP_AS 23 String Autonomous system of the ISP of the source

address from geodata (if available)

Column name # Data type Default description
SRC_COUNTRYCODE 24 String Country gode qf the source address from
geodata (if available)
. Geographical region of the source address
25 Strin . .
SRC_REGION ng from geodata (if available)
. Geographical region name of the source
26 St . .
SRC_REGION_NAME ring address from geodata (if available)
SRC CITY 27 String City of the source address from geodata (if
- available)
SRC POSTALCODE 28 String Ppstal pode of the source address from geodata
- (if available)
SRC LONGITUDE 29 Float64 Longitpde of the source address from geodata
- (if available)
SRC LATITUDE 30 Float64 Lati.tude of the source address from geodata (if
- available)
SRC AREACODE 31 String Area cpde of the source address from geodata
- (if available)
SRC TIMEZONE 30 String Time zone of the source address from geodata
- (if available)
DST ORGANIZATION 33 String Organizat‘ion of the destination address from
- geodata (if available)
. Autonomous system of the ISP of the
34 Strin
DST_ISP_AS & destination address from geodata (if available)
DST_COUNTRYCODE 35 String Country gode Qf the destination address from
geodata (if available)
DST REGION 36 String Geographical r.egion.of the destination address
- from geodata (if available)
. Geographical region name of the destination
37 St . .
DST_REGION_NAME g address from geodata (if available)
DST CITY 38 String City of the destination address from geodata (if
- available)
DST_POSTALCODE 39 String Postal code of t.he destination address from
geodata (if available)
DST LONGITUDE 40 Float64 Longitudf: of the destination address from
- geodata (if available)
DST LATITUDE 41 Float64 Latitude Qf the .destination address from
- geodata (if available)
DST_AREACODE 4 String Area code of the destination address from

geodata (if available)

Column name # Data type Default description
DST_TIMEZONE 43 String ;r:(;:af;n(liefzi ;}il]ea lc)l{ces)tination address from
SRC_FQDN 44 |String Full FQDN of the source IP if available.
DST_FQDN 45 |String Full FQDN of the destination IP if available.
USERNAME 46 String lCJisSeCr(I)lainSeA c;f the flow if available (mostly from
RISK_INDEX 47 UIntil6 Risk Index computed by Fl0wer
NEXTHOP_ADDRESS 48 |string ngﬁﬁ‘@?gfﬁs if available by
BGP_SRC_AS 49 String E;lg(g:ﬁgvf; Iz;g});omous system if available
0 [string[Detiuion BOT avonomous st
VLAN_SRC 5] UInt32 E;)&l\;cee; VLAN of the packet if available from
VLAN DST 59 UInt32 Destination VLAN of the packet if available

— from FlOwer

NBAR 53 String Cisco NBAR for the flow if available
FWD_STATUS 54 |UInt8 Reserved for future features
SNMP_IN 55 |UIntle Reserved for future features
SNMP_OUT 56 |UIntle Reserved for future features
PLATFORM 57 |String Reserved for future features
PROCESS 58 |String Reserved for future features

PID 59 UInt32 Reserved for future features
COMMAND 60 String Reserved for future features
DNS_QUERY 61 [String Reserved for future features
HTTP_URL 62 [String Reserved for future features
HTTP_CODE 63 UIntile Reserved for future features
USER_AGENT 64 |String Reserved for future features
srcPrefix 65 String Ei)alécef; subnet with prefix if available from

Column name # Data type Default description
dstPrefix 66 String Destination subnet with prefix if available
from FlOwer
srcZone 67 String Source zone if available from FlOwer
dstZone 68 String Destination zone if available from Fl0wer
outOfMatrix 69 String True or false if packet is not in the flow matrix
table
BidirectionalFlow 70 |String Bidirectional flow flag from IPFIX if available
IN PKTS 71 UInt64 No..of incoming packets from IPFIX if
- available
OUT PKTS 7 UInt64 No..of outgoing packets from IPFIX if
- available
IN_BYTES 73 UInte4 No. of incoming bytes from IPFIX if available
OUT_BYTES 74 UInte4 No. of outgoing bytes from IPFIX if available

Table 9.1 : Clickhouse flows table

As seen, the names of the fields are quite self-explaining and allow us to
investigate a huge number of aspects of our network. Table 9.1 reports the
Clickhouse data format but the data 1s stored in the same way on
Elasticsearch/OpenSearch.

Datatypes used are quite self-explanatory:

String: A bunch of characters, dynamic size.
Ulnt64: A 64-bit unsigned integer.

Ulnt32: A 32-bit unsigned integer.

Ulnt16: A 16-bit unsigned integer.

UlInt8: An 8-bit unsigned integer.

Float64: A 64-bit floating-point number.

Datetime: Date time field that can be represented by a string in yyyy-mm-dd
hh:mm:ss format.

Events

One special feature of FlOwer is the creation of network events files, which can
report immediately (in near-real-time) some network events that are worthy of
attention and analysis. These events are also imported both in the
Elasticsearch/OpenSearch tools, both in the Clickhouse database. So, it is worth
taking a look at them.

Some examples of network events are explained in the following table:

Eventid

Timestamp

Level

Category

Source

Message

1,730,221,500,071,457

2024-10-29
18:05:00.000

Alert

Unwanted

10.1.30.251

Flow Exporter
10.1.30.251 is
silent from more
than 600
seconds. Can you
please check up?

1,730,221,499,525,251

2024-10-29
18:04:59.000

Rule

Data
storage

10.1.61.2

FlowID:
1730226107245721
Protocol: tcp
Src:
10.1.61.2/21
Dst:
10.1.30.25/37262
Packets: 5
Bytes: 350
Matches rule FTP
- Classification
is [SUSPICIOUS]

1,730,221,499,
525,059

2024-10-29
18:04:59.000

Rule

Data
storage

10.1.61.2

FlowID:
1730226039586415
Protocol: tcp
Src:
10.1.30.25/37262
Dst:
10.1.61.2/21
Packets: 7
Bytes: 384
Matches rule FTP
- Classification
is [SUSPICIOUS]

1,730,221,498,321,240

2024-10-29
18:04:58.000

Rule

Management

10.1.30.21

FlowID:
1730225187480482
Protocol: tcp
Src:
10.1.30.25/44034
Dst:
10.1.61.2/23
Packets: 3
Bytes: 164
Matches rule
TELNET -
Classification
is [SUSPICIOUS]

Eventid Timestamp Level |Category ([Source Message

FlowID:
1730225668977693
Protocol: tcp
Src:
10.1.30.101/23
2024-10-29 Dst:
1,730,221,498,526,013 Rule [Management |10.1.30.101(10.1.30.25/40464
18:04:58.000

Packets: 3
Bytes: 176
Matches rule
TELNET -
Classification
is [SUSPICIOUS]

Table 9.2 : Example of events in the Clickhouse database

As you can see, these events are quite self-explaining and already coded inside
FlOwer, so you do not need to configure anything, except you can improve their
accuracy.

Fl0wer RTE

FlOwer is normally installed with a so-called RTE, which stands for run-time
environment. Although FlOwer itself is written in C language, many tools use a
Python environment with a collection of modules that are normally not installed.
To ease the user experience, the FlOwer RTE contains the full Python interpreter
and PIP that was used to build the tools installed with FlOwer, and we can use it to
write and run our custom scripts.

Traffic classification

FlOwer provides many features and configurations to improve traffic classification,
which is the real driver in flow-based traffic analysis tools. Network probabilistic
application recognition (NPAR) is very advanced and precise. Traffic rules can
also be used to trigger actions when a certain pattern of IP traffic is matched.
Custom network list allows you to detect traffic to most sites and change the NPAR
for a flow. All this works for both IPv4 and IPv6, taking traffic classification to an
unpaired level.

Data analysis examples

Now that we have a better understanding of the data model, the tools of trade and

the actual data, let us see some examples of how to make a good use of the data
that we are collecting.

DNS queries

As we all know, DNS is a key component of the Internet. For whatever IP network
you use, it is the service that translates human-readable names into network
addresses. Furthermore, if you use IPv6, it is practically mandatory. Even the most
trained network engineer will never remember 128-bit network addresses.
However, what companies usually do is leave the DNS port (UDP/53 and TCP/53)
on the firewall and then configure the clients with known DNS services, internal or
external.

Keeping UDP port 53 open on a firewall poses several security risks, as this port is
typically used for DNS queries, and malicious actors can exploit it in various ways.
Here are the primary risks:

e DNS amplification attacks: UDP port 53 can be abused in DDoS
amplification attacks, where attackers send small DNS queries with spoofed IP
addresses (pretending to be the victim) to a DNS server. The server responds
with large DNS replies to the victim’s IP address, overwhelming the target
network with traffic.

 DNS cache poisoning: DNS cache poisoning (or spoofing) occurs when an
attacker manipulates the DNS response to return a fake IP address for a
legitimate domain, redirecting users to malicious websites. Keeping port 53
open makes it easier for attackers to target your DNS resolver with this kind of
attack.

e Exposing internal network information: If DNS services on UDP port 53
are not configured properly (for example, exposing a DNS server to the
Internet that was intended for internal use), sensitive internal domain and host
information can be leaked to attackers. This could provide insight into internal
infrastructure and open pathways for further attacks.

e Data exfiltration via DNS tunneling: Attackers can use DNS tunneling to
bypass traditional firewalls and network security mechanisms. By sending data
encoded within DNS queries and responses, they can exfiltrate information
from your network without detection, especially if DNS traffic is not
monitored carefully.

e Open resolver exploitation: If your DNS server is configured as an open
resolver (responding to queries from anyone on the Internet), attackers can
exploit it for various purposes, such as being part of DDoS attacks or scanning
your network for vulnerabilities.

Some mitigation strategies are as follows:

Limit access: Configure your firewall to allow UDP port 53 only for trusted
internal DNS servers and block external DNS requests.

Use DNSSEC: Implement DNS Security Extensions (DNSSEC) to ensure
the authenticity and integrity of DNS responses, helping prevent cache
poisoning.

Rate limiting: Use rate limiting on DNS requests to reduce the risk of
amplification attacks.

Monitor DNS traffic: Actively monitor DNS traffic for unusual activity or
anomalies to detect DNS tunneling or other malicious behavior.

Use alternatives: Consider using more secure options such as DNS over
HTTPS (DoH) or DNS over TLS (DoT), which encrypt DNS traffic to
prevent eavesdropping or manipulation.

In summary, keeping UDP port 53 open without proper security measures can
expose your network to significant risks, from amplification attacks to data
exfiltration, making it critical to restrict and secure DNS traffic.

Flow protocols come to rescue in the monitoring DNS traffic. Let us assume that
we set up correctly (as described in Chapter 8, Ingesting Data into Clickhouse and
Elasticsearch) the ingestion process to both Elasticsearch and Clickhouse, and let
us try to create a browsing filter in Elasticsearch. We just to have an idea about
how UDP Port 53 traffic flows inside and outside our network. Refer to the
following figure:

r O OI1& 0

Homa Fitrwor - Fiwar » | £3 All Bookmarks

Explore in Discover Inspect Share Settings Cancel Save to library

v Selected fleids k]

* DETADDRESS. keyward

¥ SRC_ADDRESS.keyword

¥ Suggestions

Figure 9.1: Kibana view of DNS usage distribution

As you see, it is quite easy to create a view with Kibana using the NPAR field set
as a key. It is very useful to set up a view that identifies and summarizes by the
amount of traffic (FLOW_BYTE_DELTA_COUNT ficld) towards the different DNS
server (DST_PORT 53) used inside our organization.

In our example, a DNS tunnel and exfiltration tool (dnscat2 -
https://github.com/iagox86/dnscat2) was installed on test systems to show how
the DNS tunnels work and how we can identify it. The scenario assumes that the
server tool was installed on host 192.168.179.111 system (let us pretend it is a
public Internet server) and an internal system (10.1.30.222) was compromised and
the client was installed on it. Refer to the following figure:

nnnnn shibaards# view/6330a3a7-1a63-4864-9a¢6-0e2 LecalNBLT_g=(hiters:Hi] refreshintervalipause: L value: 60000 tme-tire.. G, & O B £ | @

uuuuu I Donndetector § Store

(£) PEC Legalmail @ Fiowes - Flower g VAT # | [Al Bookmarks

7
198008 1 05
1AL DI /

Figure 9.2: Deep filtering of DNS servers usage in Kibana
As we can see, an interesting percentage of the DNS traffic is going towards the

192.168.179.111 server. If we investigate and investigate the flows, we can see
something like the following figure:

https://github.com/iagox86/dnscat2

C @ ANotsecws 101205105 s #7_g=(fity

owzhionewl.. S % 0 @ 2| @ i

% Bookmarks [3 Home [3 Hews [9 LAVORD [Traffico [Technologios [0 LAB-METWORK [Musica) Downdetectoe 5 Store [6) PEC Logalmall @ Fitwer - Fiwer (VAT » | [3 AN Bockmarks

How Gpan Share

Fiwar © O owzassirem ™

Lasthows 3 Aefresh

B | [Search hekd namme 8 B Amsawval v M breakdewn

1 CATEQORY

1 oM

Flakd atmisties E e —

FLOW_DATERECIIVID (3 4 Documem

F2, 2004 8 VIIETIHEB0D OST_ADORESS 1HINEA.ITELNAT DTN AR2EEATINNT XINFO 081 FSEIBEATEING 15 e server uerbed by 10.1.00.32
' 3 BSP_EST_AS & BGP_SSC_AS 0 MidirestionalFlew Falee CATEGORY WETBORE DFTRATION COMUAND CEERY Mone DFT_AREACOCE @ DST.CTTY Wose DT_COUNTRYCOZE Hon
v & DET_IEF AR Mone DST_LATITUDE 199 DST_LONEITUDE -i) DET ORCANIZATION Interral C197% DT MOAT 53 DET_POSTALCOE Mors DETEEGION Mo

25800 ERC_ADOBFSS 193.164.174.111 ERC_FODN 192.165.1T9.111 KINFO DAS: 142.188.179.111 is a= wed 10vd DHE server reslying 1s 18
2 DSP_BST_AS & BGP_SHC_IS 0 MidirsctisnalFles Fales CATEGORY NETEOGN 0PL COMUND Nons DWS_OBERY Mons DST_ADDRESS 10.1,30.737 BST_ARIACOOL 3 DST_CETY Ken
= DIT_COUMTAYDSOK o SIT_MGOM 10.1.36.151 DIT_I3_AD Meam SIT_LATITUDE -10) DIT_LOWMITUDE -13 DIT_ORMMIEATION Tulerssl 19.0.0.653 RECTIO DIT_FONT 54,36

T2, 34 B N3G BGR DOT_ADORENE THITEH.TTH.NT1 DOT_FON 12 DEE.ATHLANT XINFO DA: FRETREITONNE is ae usal
3 BSP_DST AR & BUP_SC_AS 0 BigirestionalFlew Faloe CATEQDRY NETWORX 0FE
& DST_1SP AR Wene DST_LATITUOE 199 DST_LONCITUDE -l DET DRCANIZATION 1

5§ server queried by 19
Wone DFT AREACODE @ DETCITY
B DST_SOAT 55 DST_POSTALCOOE Mo

& DT COMTRYCOOE Hon
DET_EEGION Nen_

SBC_ACGEFSE 1H2.T4A.170.111 SAC_FOON 1%2.148.179.111 BGP_DST_AS § BEP_SACAS & Biirectiosalflew ITECORY WETHOUK (PERATICH COMMAMD Were BMS_OUERY Nen
& DST_ADOBESS 19.1.79.39 DST_ARTACOCE 3 BST_CETY Wore ST COBMTEYCOOL None DST_FSCW 10.1.39.39 DST_ISP_IS Wone DST_LATITEOR -195 DST_LOMGITHOE -3
9 DST_CRGANEIATION Intersal 13.0.0.878 FECIH1A DST_PORT 3 DST_PLSTALEOGE Moee DST_REGECH Rone BST_RICTON WARE Uoe DST_TIRIZONE Hone detPrefiz 18.3.0.5/

B0 BAC_ADOREEE 193968978111 EAC_FOON 102068179111 BSP_DET_AS 0 BEP_ERC AL © Bldire:tiosalflaw i Eom B BN i
& DET_ADGRERE 1.1 10 39 DET_AREACHEE § B4T_CETY DRNTRFEO0E None 50N 1.1, 5% B EAT_LOMAITUEE -5
9 DET_CRGANEIATION E 19.0.0.8, 413 DST_PORT 57,520 DST_POSTALCODE Noce DST_REGEOM Nons SST_RECION NARE Mose DST_TIMEDOE Hore datfrefiz 18.8.0.8/-

Rrows g pages 108

Figure 9.3: Elastisearch detail of DNS flows
If we drill down inside a single flow, we can see in the details as follows:

- G [ANotsecss 10120915 - x ’ f v I . L v 00D @ i
(O Heme [3News [3ULMWORD [3 Wafco [Rchnologies (3 LABNETWORK [Musics [Downdetector § Store (3 PECLegaimail @ Fiower- Fidwer (G VAT » | 3 A8 Bockmaris
’ T T — m
(L. -] o = o Batveat [.
E ven & B Avomtsral v Nobreskdown 2
Ll
L I Tt JSOM
| EEE e [T EES E R T -
: - ™ Ve
[[N3, 38000 14 W— ’
[. ’
. i .
. (R KT R
’ . =
" Mew 13, D4 8 N) 0820 eER BEC_AEEES 1088179911 AR TR B o e
. w4 Dheh narvar
o) CELIPAD s el Fuw, ST Hew 1. 2024 8 13 2420 00
L
. - v BST_ADOREIS 1RENGNTH NN BET_FUD VIR 06N 17H. 171 INT DA YHE0HAATHN £ an o ey B
T ———, . vl DML Berear Guesied by 10.1,50.37 R
BCP_BAT IS o BOP S AT @ Mueirestimalfies falss CATEGONY M TR (e s ROWODEE szt
- 2
. B9 Mew 12 3904 8 1934098 SRC_AMSESS T93NEALYP,ATY SRE_FODN VAZ.NENPE1Y + FaDsTaTy o
1 8GP_BT_IS 3 BGR_SRC_4S 8 Basirertismalslen «
¢ oot sostacoos W tomusn s Da Qe Mo SET_Mbetan 16,0 i Frevss
: o » . SAC_ADOSET 192_BEALITHNTY BAC,FODN TAZ. 68,
R 1 BCP_MT_IS 8 BOB_SE AT 8 MidieectismalFies cammusay wrraces LRI I
N COMRMMD Mone DS QNERY W SST_ANpaRE 8.0 AT _AMEACODT B B o
L B BT PO VRRONER. VPRI
- - — . - — ——
S e g 58 1

Figure 9.4: DNS abnormal byte count in flow
Actually, the FLOW_BYTE_DELTA_COUNT value of this flow (which should be a

DNS query) reports 306.414 bytes and FLOW_PACKET_DELTA_COUNT reports
3522 packets, which is definitely not a DNS query.

Also, if we check in the Events (where unusual activities are reported as soon as
they are detected) we can see the following:

Figure 9.5: View of the Events flows reporting unofficial DNS flows

In FlOwer, you can configure the company-established DNS and NTP servers, and
the 192.168.179.111 address is not in the list (which are placed in
/opt/flewer/list folder and are named dns4list.txt and dns6list.txt
for IPv4 and IPv6 DNS servers and ntp4list.txt and ntp6list.txt for IPv4
and [Pv6 NTP servers).

This simple feature can set you quite ahead of the 292 days (roughly 9 months) for
business to identify and report a data breach (source:
https://www.ibm.com/security/data-breach - IBM Cost of a Data Breach Report
2024). Flow data can help a lot in cybersecurity.

PAM access

Most modern and large organizations nowadays make use of Privileged Access
Management (PAM) solutions to allow remote management of systems, making it
easy to track management connections and be compliant with a lot of security laws.

PAM solutions are security tools designed to protect, monitor, and manage
privileged accounts within an organization. These accounts have access to sensitive
data, systems, or applications, often with elevated permissions, and are typically
used by administrators, IT staff, or automated processes. PAM solutions aim to
reduce risks associated with these accounts, such as insider threats, accidental

https://www.ibm.com/security/data-breach

misuse, or external attacks that exploit privileged credentials.

The key features of a PAM solution are as follows:

Credential management: PAM solutions secure privileged credentials (for
example, passwords, SSH keys) by storing them in a centralized, encrypted
vault. This way, access is tightly controlled, and credentials are rotated
frequently to reduce risks.

Session management and monitoring: PAM enables organizations to track
and record sessions involving privileged access. It allows real-time
monitoring, logging, and even video recordings of sessions, which can help in
identifying unusual behavior and ensuring compliance.

Access control and policy enforcement: PAM enforces rules on who can
access privileged accounts and what actions they can perform. It often uses
Multi-Factor Authentication (MFA) and RBAC to ensure only authorized
individuals access privileged assets.

Auditing and reporting: PAM solutions log activities related to privileged
accounts, providing detailed audit trails for compliance reporting and incident
investigation. They often include predefined reports and dashboards for
security audits.

Just-In-Time (JIT) access: Some PAM solutions provide temporary access
based on the principle of least privilege, granting users only the permissions
they need for a specific task and for a limited time, which helps minimize
exposure.

Automation and policy management: PAM tools can automate tasks such as
password rotation, policy enforcement, and access requests, helping streamline
workflows and reduce human error.

The benefits of PAM solutions are as follows:

Reduced security risks: PAM reduces the risk of unauthorized access and
insider threats by limiting access to sensitive data and critical systems.

Compliance and governance: Many regulatory standards, such as GDPR,
HIPAA, and PCI DSS, require privileged access management controls, which
PAM solutions help organizations meet.

Improved operational efficiency: Automating access requests and credential
management streamlines IT operations and reduces the administrative burden
of managing privileged accounts.

Some common use cases for PAM are as follows:

Protecting access to critical systems: PAM ensures that only authorized
personnel can access systems with sensitive data, such as financial or critical

infrastructure.

e Securing DevOps and cloud environments: By managing credentials used in
dynamic environments like DevOps and cloud services, PAM can help prevent
the exposure of secrets and privileged access.

e Third-party access management: PAM can restrict and monitor access given
to external vendors or contractors, providing additional security for outsourced
tasks.

Some of the leading PAM providers include CyberArk, BeyondTrust and One
Identity. Each offers various features and integrations tailored to fit different
enterprise needs.

PAM is increasingly essential as organizations face complex cybersecurity
challenges and compliance requirements. It provides critical tools to secure
privileged accounts and improve organizational security posture.

But how does network traffic control fit in all this scenario? Quite easy.

All management connections, when a PAM solution is deployed, should come from
so-called Bastion Hosts (PSM in CyberArk terminology), which are part of the
PAM solution itself. There can be some cases in which the connection (for
emergency or technical reasons) could bypass the PAM solution. However, in a
normal scenario, all other management connections should be worthy of
investigation, especially during out-of-working areas. And that is where FlOwer
comes to work.

By using the FlOwer traffic rules, we can tag the normal Bastion Host | System
traffic (whatever, RDP, SSH, and so on) as normal traffic, thus removing it from
due diligence, and investigate all other “unexpected” management traffic.

Let us, as an example, say that our Bastion Hosts are 10.1.30.120 and 10.1.30.121.
SSH and RDP connections will originate from them, and all system administrators
will connect to the 192.168.1.0/24 network via wired connections and
192.168.2.0/24 via wireless connections. All our servers are on the 10.1.10/24
network.

We can create an ipgroup containing the Client Systems like:
ipgroup clients

{
description = “Client Systems”
address = {
“192.168.1.0/24”,
“192.168.2.0/24”

}

Then one for the servers:
ipgroup servers

{
description = “Server Systems”
address = {
“10.1.10.0/24”
b
b

As well as a group for the Bastion Hosts:
ipgroup bastion

{
description = “Bastion Hosts”
address = {
“10.1.30.120/32”,
“10.1.30.121/32”
h
b

Then, we define the services that must be matched, such as:
servicegroup ManagementProtocols

{
description = “System Management Protocols”
services = {
“22/tcp”,
“3389/tcp”
b
b

Now we can create a simple rule to tag the traffic:
traffic_rule ManagementTraffic
{

exporter = any

ipversion = 4

protocol = any

tcp_flags = any

tos = any

add_to_nst = yes

username = “”

src_addr = @bastion

src_mask = any

src_port = any

dst_addr = @servers

dst_mask = any

dst_port = @ManagementTraffic

maxpacketsize = any

classification = normal

action = mark_npar

description = “TRAFFIC FROM BASTIONHOST”
negaterule = no

store = yes

continue = no

enable_reverse = yes

category = CATEGORY_MANAGEMENT

b

All these directives, the ipgroup, the servicegroup and the traffic rule ones, are
read at FlOwer startup from the file /opt/flOwer/etc/flOwer_rules.conf
and parsed accordingly. They are all documented in the user manual. In our
example, the rule marks all the traffic from Bastion Hosts (@bastion) to servers
(@servers) for the chosen services (@ManagementTraffic) replacing the
NPAR field in the flow with the provided description. So, all the management
traffic not marked as TRAFFIC FROM BASTIONHOST is worth investigating. Since
we know it, we could also choose to completely ignore this kind of traffic by
setting the store = no and add_to_nst = no fields in the traffic rule, so that
we would only see the management traffic not originating from the Bastion Hosts.

Rogue VTEPs

A very useful feature of FlOwer is its capability of identifying Rogue VTEPs and
VXLAN tunnels inside the network. In FlOwer, it is possible to configure well-
known and established IPv4 and IPv6 VTEPs by simply adding their IP addresses
in /opt/floewer/iplist/vtepdlist.txt and
/opt/flower/iplist/vtep6list.txt for IPv4 and IPv6. This comes
especially handy if you want to keep full control in structured OpenStack
installations.

For example, if we have a broken cable in an area of our lab where we did not want
to rewire, we resorted to configuring a couple of Mikrotik routerboards with Wi-Fi

using VXLAN to transport our management network and avoid reconfiguring the
printer too. In case we forget to update the previously mentioned files, we get the
following notifications by FlOwer:
clickhouse.ipébnet.me :) SELECT
TIMESTAMP, LEVEL ,CATEGORY, SOURCE,MESSAGE FROM FLOWER.EVENTS
WHERE LEVEL LIKE '%POLICY%' AND MESSAGE LIKE '%VTEP%' ORDER
BY TIMESTAMP DESCENDING LIMIT 5;
SELECT

TIMESTAMP,

LEVEL,

CATEGORY,

SOURCE,

MESSAGE
FROM FLOWER.EVENTS
WHERE (LEVEL LIKE '%POLICY%') AND (MESSAGE LIKE '%VTEP%')
ORDER BY TIMESTAMP DESC
Query id: b5daafel-3b23-471c-bfdf-9128ba63d7a0

Timestamp Level Category Source Message

TUNNEL: possibly TUNNEL Traffic
(UDP 8472 possibly Linux 3.7
2024-11-10 . Network VTEP VXLAN Protocol) from
Polic 10.1.30.21
11:52:43 Y |Tunnel 10.100.1.1/50610 to
10.100.1.20/8472 (7232 bytes in

32 packets)

TUNNEL: possibly TUNNEL Traffic
(UDP 8472 possibly Linux 3.7
2024-11-10 . Network VTEP VXLAN Protocol) from

Polic 10.1.30.21
11:52:43 Y |tunnel 10.100.1.1/50068 to
10.100.1.20/8472 (7360 bytes in

32 packets)

TUNNEL: possibly TUNNEL Traffic
(UDP 8472 possibly Linux 3.7
2024-11-10 Policy Network 10.1.30.21 VTEP VXLAN Protocol) from
11:52:43 Tunnel 10.100.1.1/45058 to
10.100.1.20/8472 (8000 bytes in

32 packets)

TUNNEL: possibly TUNNEL Traffic
(UDP 8472 possibly Linux 3.7
2024-11-10 . Network VTEP VXLAN Protocol) from

Polic 10.1.30.21
11:52:43 Y |tunnel 10.100.1.1/60488 to
10.100.1.20/8472 (7456 bytes in

32 packets)

Table 9.3 : Example of events regarding rogue VTEPs

As you see, a simple query on Clickhouse (that can be easily automated) can reveal
misconfigurations and trickeries that maybe can be fixed with a more structured
approach.

Out of policy SNMP

Most companies running services are normally using monitoring tools such as
Centreon, Nagios, Icinga or BMC Patrol to check the availability of systems from
specific management consoles, and these monitoring systems often make use of
one of the more abused and misconfigured network management protocol: SNMP.

The Simple Network Management Protocol (SNMP) is primarily used for
monitoring and managing devices on a network. However, when misconfigured or
poorly secured, it can be exploited by attackers in the context of hacking. Here is
an overview of how SNMP is used maliciously:

e Information gathering (Reconnaissance)

o Exploiting public community strings: SNMP uses community strings for
access control. The default community string public is often left
unchanged, allowing attackers to query devices.

e Enumerating network details: Attackers use SNMP to extract sensitive
information such as:

o Device names and types

o

IP addresses and subnet details

o

Routing tables

(e]

Installed software versions (useful for finding vulnerabilities)

(e]

Exploiting Weak Configurations

e SNMPv1 and SNMPv2 weaknesses: These older versions lack encryption,
making them vulnerable to:

o Man-in-the-middle attacks: Intercepting and modifying SNMP traffic.
o Eavesdropping: Capturing plaintext data, including community strings.

o Default credentials: Many devices ship with default SNMP
configurations, which attackers can exploit.

e Gaining unauthorized access

o Using SNMP set commands (if improperly configured) to:

Change device configurations.

Redirect traffic (for example, altering routing tables).

Disable or disrupt services by modifying system settings.

Launching further attacks

o Amplification attacks: SNMP can be abused in DDoS attacks via
amplification, where small queries generate large amounts of traffic to
overwhelm targets.

o Pivoting: Information gathered via SNMP can help an attacker move
laterally within the network.

e Tools and techniques
o Common tools used in SNMP-based attacks include:

= Snmpwalk: For querying SNMP devices.
= Snmpcheck: To audit and enumerate SNMP-enabled devices.
= Metasploit framework: Includes modules for SNMP exploitation.

e Mitigation strategies

o Disable SNMP if not needed.
o Use SNMPv3, which supports encryption and authentication.

o

Change default community strings and enforce strong ones.

(e]

Limit SNMP access to trusted IP ranges via firewall rules.

o

Monitor SNMP traffic for unusual patterns.

SNMP exploitation highlights the risks of poor configuration management in
network security.

That 1s why in FlOwer you can set a list of allowed SNMP management systems
that are authorized to issue queries to SNMP enabled devices without raising an
Event. You just need to add the I[P address 1in the file
/opt/flower/iplist/snmp4list.txt for IPv4 addresses and in
/opt/flower/iplist/snmp6list.txt for IPv6 SNMP managers. All the
matching traffic will be considered normal system management and will not raise
events like in the following example:

clickhouse.ip6net.me :) SELECT * FROM FLOWER.EVENTS WHERE
(MESSAGE LIKE '%10.1.61.221%' AND MESSAGE LIKE '%SNMP%')
ORDER BY TIMESTAMP ASCENDING LIMIT 1;

Query id: 9fd3bdee-5d10-42f3-96fd-cb4a673bfd14

Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 24.7.3.

Output:

EventID Timestamp |Level |Category Source Message

SNMP: Unallowed
SNMP Traffic (UDP
16992 possible
2024-11- Intel AMT HTTP
1731891024139813 |18 Policy [Management [10.1.30.21 |Protocol) from
01:50:24 10.1.20.202/161 to
10.1.61.221/16992
(3042 bytes in 33
packets)

Table 9.4 : Example of out of policy SNMP traffic reported in events

We can easily automate this task by means of a simple Python script using the
bundled RTE environment, as follows:
#!/opt/flower/bin/floOpy
import os
import time
import csv
import pandas as pd
import datetime as datetime
import pathlib
import sys
import 1z4
from os import system
from collections import Counter
from tabulate import tabulate
import clickhouse_driver as CH
from clickhouse driver import Client
def dumpcsv(dataframe,filename):

dataframe.to _csv(filename, encoding='utf-8',
index=False)
self-explaining values
server = "10.1.20.17"
csvoutput = "/tmp/snmp_alerts.csv"
try:

conn = CH.Client(server,

secure=False,
verify=False,
compression=True)
except:
print("Can't connect to Clickhouse server at:
"+server)
sys.exit(2)
print("Retrieving SNMP data into "+csvoutput)
try:
df = conn.query_dataframe ("SELECT
TIMESTAMP, LEVEL ,CATEGORY, SOURCE ,MESSAGE FROM FLOWER.EVENTS
WHERE LEVEL LIKE \'%POLICY%\' AND MESSAGE LIKE \'%SNMPZ%\'
ORDER BY TIMESTAMP DESCENDING;")
except:
print("Can't retrieve data from Clickhouse server
at: "+server)
sys.exit(2)
print("Data fetched, formatting ...")
dumpcsv(df, csvoutput)
print(tabulate(df, headers='keys', tablefmt='psql'))

This script simply connects to the Clickhouse database, performs a query filtering
the SNMP alerts and creates both a CSV file with the events while printing them
on screen. Scheduling in crontab and sending it via mail is left as an exercise to the

reader.

Conclusion

What we started in this chapter is to try to give the reader an understanding of the
possibilities that are available by means of using two such powerful technologies,
like OLAP and search and analysis tools like Elasticsearch. Obviously, a good
knowledge of the behavior of network protocols is a requirement, but working with

a good foundation is going to save your network a lot of trouble.

CHAPTER 10
Understanding the Flow Matrix

Introduction

In the previous chapters, we have seen what network flows are, how to
receive them from a variety of infrastructure devices, how to collect them
and how to use them in ways to improve our security posture. This is
certainly not as precise as a deep inspection of network packet contents, but
it is surely effective and has some advantages considering that it is scalable.
You can check a 100Mbit network as well as a 1 Terabit network without big
issues since you work on flows and not on packets. Moreover, it is also
reliable. Nowadays, more than 95% of Internet (and not only) network
traffic is encrypted, as opposed to 2012, when it was only about 57%. So,
even using deep packet inspection with packet decryption by means of
certificates (possibly up to TLS 1.2 but not further) is a huge waste of CPU
cycles. There must be other means to perform successful network traffic
analysis, and Flow analysis is one of them.

Given that, one of the biggest advantages of having a flow traffic analysis
infrastructure is the ability to create, update and monitor a flow matrix table,
to have a clear view of what is happening inside our network.

Structure

In this chapter, we will discuss the following topics:
e Flow matrix

e Making good use of FlOwer’s flow matrix
e (Capacity planning
e Network security with the flow matrix

Objectives

This chapter introduces an often underestimated concept: the flow matrix
inside the company network. A deep dive into the concept will allow the
reader to use it to improve the security of the whole network.

Flow matrix

In a network environment, a flow matrix is a tabular or graphical
representation of traffic flows between different entities within the network.
It is used to visualize and analyse how data is transferred between devices,
applications, or network segments.

The key characteristics of a flow matrix are as follows:
e Structure:
o The matrix rows typically represent source entities (for example, IP
addresses, VLANS, or devices).
o The columns represent destination entities.

o Each cell shows the volume, type, or characteristics of traffic
flowing between the corresponding source and destination.

e Traffic metrics: The data in the matrix often includes:

(¢]

Traffic volume (bytes or packets)

Protocols used (for example, TCP, UDP)
Applications (for example, HTTP, DNS, FTP)
Flow durations and timestamps.

(¢]

o

(¢]

e Granularity: The matric can represent traffic at various levels of
granularity:

o Individual devices or IPs.
o Subnets or VLAN:S.

o Logical groupings like application clusters.

Dynamic nature: Flow matrices can be static (captured at a specific
moment) or dynamic, updated in real-time for monitoring.

The uses of a flow matrix are as follows:

Traffic analysis:

o Identifying high-volume traffic sources or destinations.

o Pinpointing potential bottlenecks or overloaded links.
Security monitoring:

o Detecting anomalous traffic patterns (for example, unusual flows to

unknown destinations).

o Visualizing lateral movement during an attack.
Capacity planning: Analysing which parts of the network are under or
over-utilized to guide upgrades.

Policy enforcement: Validating access control policies by reviewing
traffic flows against allowed source-destination pairs.

Incident response: Understanding the spread of an attack or malware
by observing unauthorized flows.

Some tools for generating flow matrices are as follows:

NetFlow/IPFIX: Protocols used to capture flow data from routers or
switches.

sFlow: Provides flow sampling for traffic analysis.

SIEM tools: Security-focused tools like Splunk or Elastic stack can
create flow matrices for analysis from network flow data.

A flow matrix provides invaluable insights into network behaviour, aiding in
operational efficiency and security. The flow matrix in FlOwer works very
easily, and if enabled, it is automatically built while the software receives
flows. The logic i1s quite simple: mostly used flows get higher positions in
the flow matrix, less used ones are moved to lower positions, or they are
removed if a flow limit is set in the FlOwer parameters.

Making good use of FlQwer’s flow matrix

FlOwer 1s a network flow analysis tool that automatically builds and updates
a flow matrix based on collected flows, designed for security and capacity
planning. The default installation of FlOwer comes with reasoned defaults.
The evaluation version has a limit of 50 entries for the flow matrix, but these
often can be more than enough to have a good idea of what is happening in
our network.

The basic reasoning about FlOwer is that it considers everything that is not
adequately described as external traffic. This is why in the file
/opt/flower/etc/flOwer_internal_networks.conf we have the
following default values:

network Internall®

{
subnet = 10.0.0.0
netmask = 8
description = "Internal 10.0.0.0/8 RFC1918"
}
network Internall72
{
subnet = 172.16.0.0
netmask = 12
description = "Internal 172.16.0.0/12 RFC1918"
}
network Internallo2
{
subnet = 192.168.0.0
netmask = 16
description = "Internal 192.168.0.0/16 RFC1918"
}

Understandably, most companies adopted RFC1918 internal IP addressing,
and as such this can be considered a safe assumption, although your case
could be different. In this case, nobody prevents you from inserting the
correct values for your internal networks and getting good results.

When FlOwer is started, it reads its configuration values from
/opt/flower/etc/flOwer.conf and if the flow matrix is enabled with

the following lines:

HHHHHHH AR
Flow Matrix
HHHHHHHHHHH
enable_flow matrix = yes
enable_matrix_unknown = no

Then it will keep its internal flow matrix updated and create a dump of it in
CSV every 10 minutes in /opt/floOwer/data/flowmatrix.csv as well
as an /opt/flewer/data/flowmatrix.dat in binary format to reload it

if the software is stopped for any reason.

Let us say we started FlOwer with the default values, and wait for 10 minutes
of traffic to be viewed and collected. We are going to get a first flow matrix
of the entire network (depending on where we placed or configured our
NetFlow/IPFIX exporters, as can be seen in the following table:

13:45:30

sre- dst- Pro- traf | (=
srctone | dstzone | ST | gy, | OSESUB- |y | srcDe- dstDe- | FlowDi- | oo dst- | o | pye | pags bytes | packets | firstSeen | lastSeen fic: | gy | risk [slf-
net net scription | scription | rection Port Cate- type | ca-
mask mask col el f
gory tion
UNKNOWN | UNKNOWN Internal Internal INTER- | udp | 2056 | UDP 2056 2024- 2004~ NET- | UN- UN-
10.0.0.0/8 | 10.0.6.8/8 | NAL_TO_ probably 10-63 18-20 WORK | RAT- RATED
18.6.0.6| 8 |(10.6.8.8| & [RFC1913 RFC1913 INTER- Cisco Net- 287959 | 2.02E+10 | 25247779 0p- | ED n
NAL flow/IPFIX ERA-
Protocol @aasie | B3| TIon
UNKNOWN | UNKNOWN Internal | Internal | INTER- | dicmp | @ [ICMP Proto- 2024- opq- | NET- | UN- UN-
10.0.0.0/8 | 10.0.8.8/8 | NAL_TO_ col Code: 10-83 1. WORK | RAT- RATED
10.0.0.0 [8 |10.0.0.8 | 8 [RFC1918 RFC1918 INTER- Not avail- 375908 | 1.55E+89 | 7729167 0P- | ED 64
NAL able T ERA-
13:45:05 | | TION
UNKNOWN | UNKNOWN Internal Internal INTER- | tcp | 8291 | TCP 8291 2024- 2004~ NET- | UN- UN-
10.0.0.0/8 | 10.0.0.0/8 | NAL_TO_ Mikrotik 10-03 18-20 WORK | RAT- RATED
10.6.0.0(8 |10.6.0.0| 8 |RFCI918 | RFCI918 | INTER- inbox 93096 | 77621545 | 712443 0p- | ED n
NAL management g | ERA-
protocol sy | | o
UNKNOWN | UNKNOWN Internal Internal INTER- | udp | 5353 | UDP 5353 204- 2004- NET- | UN- UN-
10.0.0.0/8 | 10.0.6.8/8 | NAL_TO_ Multicast 10-63 18-20 WORK | RAT- RATED
10.0.0.0| 8 |10.0.0.0| & [RFC1918 [RFC1918 | INTER- DNS Apple 80340 | 2966408 | 213807 oP- | ED 7%
NAL Bonjour - ERA-
13:45:15 | 7 | TION
UNKNOWN | UNKNOWN Internal Internal INTER- | tep 86 | TCP 80 HTTP 2024- 2024- WEB | UN- UN-
10.8.0.8/8 | 19.8.8.8/8 | NAL_TO_ Protocol 10-83 18- RAT- RATED
18.8.8.8 | B 18.8.0.0 | 8 RFC1918 RFC1918 INTER- 54861 | 24135326 | 249144 ED 7
NAL
13:45:20 13:49:35
UNKNOWN | UNKNOWN Internal Internal INTER- | tep H | T FTP UN- | UN- SUs-
10.9.0.9/8 | 10.0.0.8/8 | NAL_TO_ n 02- 224 | WANT- | RAT- PI-
RFC1918 RFC1918 INTER- FTP- 10-03 10-20 ED ED CI0US
16.0.0.0 | 8 |10.0.6.0| & NAL Con- 240027 | 65065916 | 1202991 n
trol
Pro- 13:45:25 13:47:3
tocol
UNKNOWN | UNKNOWN Internal Internal INTER- | tcp 2 | TCP 22 SSW/ 2024- 2004~ MAN- | UN- UN-
10.0.0.0/8 | 10.0.6.8/8 | NAL_TO_ SFTP Pro- 10-63 18-20 MGE- | RAT- RATED
16.0.0.0 | 8 18.6.0.0 | 8 RFC1918 RFC1918 INTER- tocol 51289 | 2.45E+89 | 16968197 MENT | ED 70
NAL
13:47:40

Table 10.1: A sample flow matrix

As we can see, we just took the first seven flow types in the matrix to get an
idea. The start is good; we know which flows go from where to where and
how many hits, bytes, and packets there are, but we did not add any detail!
Let us start to improve our
/opt/flower/etc/flower_internal_networks.conf by means of
adding the subnets we know and see if things improve:

network FrontEnd

{
subnet = 10.1.10.0
netmask = 24
description = "FrontEnd"
zone = "PUBLIC"

}

network Backend

{
subnet = 10.1.20.0
netmask = 24
description = "Backend"
zone = "SECURE"

}

network Management

{
subnet = 10.1.30.0
netmask = 24
description = "Management"
zone = "INTERNAL"

}

network Wifiold

{

subnet = 10.1.60.0
netmask = 24
description = "Wifi OLD"
zone = "INTERNAL"

network Wifi

{
subnet = 10.1.61.0
netmask = 24
description = "Wifi"
zone = "INTERNAL"

}

network router-external

{
subnet = 192.168.179.0
netmask = 24
description = "ROUTER-EXTERNAL"
zone = "PUBLIC"

}

network DMZ

{
subnet = 192.168.1.0
netmask = 24
description = "DMZ"
zone = "PUBLIC"

}

network Internall®

{
subnet = 10.0.0.0
netmask = 8
description = "Internal 10.0.0.0/8 RFC1918"

}

network Internall72

{
subnet = 172.16.0.0
netmask = 12
description = "Internal 172.16.0.0/12 RFC1918"

}

network Internall92

{

subnet = 192.168.0.0

}

netmask = 16

description

"Internal 192.168.0.0/16 RFC1918"

Now, besides adding the subnets, we also added a zone to our internal
networks and left the defaults untouched. As such, every other network we
have will be considered internal. Remove the /opt/flower/etc/flow
matrix files and restart collecting.

We get the following table now:

sne- dst- | srcDe- i e
srcZone | dstZome | srcSubmet | Met- | dstSubmet | Wet- | serip- dsie- | Flawblrec. | Proto- | dst- | o | gy hits bytes | packets | ArstSeen | lastSeen e Rrdsker {ledshey =
A scription tion col Port Cate- | level | type | ca-
mask mask tion B
gory tion
INTERNAL | INTER- Manage- | Management | INTER- tep 88 TCP 39 HTTP 2028 2024- |WEB | UNRAT- |7 UN-
NAL ment NAL_TO_IN- Protocol 18-83 16-26] RATED
10.1.30.8 u 10.1.30.8 1) . 252649 99637189 | 1299899
TERMAL
13:45:02 | 13:47:21
INTERNAL | INTER- wifi Nifi INTER- udp 5353 | UOP 5353 2024- 2024- | NET- | UNRAT- | 76 UN-
WAL NAL_TO_IN- Multicast ONS 18-83 16-26 | WORK | ED RATED
18.1.61.8 u 18.1.61.8 u TERNAL Apple Bonjour 76777 2.BGE+9 | 2064659 OPER-
13:45:05 | 13:47:23 | ATIN
INTERMAL | INTER- Manage- | Management | INTER- udp 161 | UOP 161 SNWP 2028- 2024~ | NET- | UNRAT- | 71 UN-
NAL ment NAL_TO_IN- Protocol 18-83 18-26 | WORK | ED RATED
18.1.30.8 u 19.1.30.8 % TERRAL 1834551 2.81E+09 | 36577934 OPER-
13:45:07 | 13:47:28 | ATION
INTERMAL | INTER- Manage- Nifi INTER- tep 1 TCP 23 | TEL- 2824~ 2024- | UN- UNRAT- | 71 5Us-
WAL went NAL_TO_TN- Telnet | NET 18-83 16-26 | WANT- | ED PI-
18.1.30.8 u 18.1.61.8 u TERNAL Proto- 192465 29375168 | 593419 o CIous
ol 13:45:15 | 13:47:31
INTERNAL | INTER- Kifi Management | INTER- tep 3 TP 23 | TEL- 2028 2024~ |[UN- | UNRAT- | 71 sUs-
NAL NAL_TO_IN- Telnet | NET 18-83 18-26 | WANT- | ED PI-
18.1.61.8 u 18.1.38.0 u TERNAL Proto- 12787 25632488 | 444889 B CI0Us
col 13:45:20 | 13:47:35
INTERNAL | INTER- Manage- Wifi INTER- tep 8191 | TCP 8291 2824~ 2024~ | NET- | UNRAT- | 71 UN-
WAL went NAL_TO_TN- Mikrotik Win- 18-83 16-26 | WORK | ED RATED
18.1.30.8 u 18.1.61.8 u TERNAL box managenent 351561 1.B2E+08 | 2158253 OPER-
protocol 13:45:25 | 13:47:37 | ATION
INTERMAL | INTER- wifi Management | INTER- tep 8291 | Tep 8291 2028- 2024- | NET- | UNRAT- | 71 UN-
WAL NAL_TO_IN~ Mikrotik Win- 16-83 16-26 [WORK | ED RATED
18.1.61.8 u 18.1.38.8 u TERNAL box managenent nnn 2.32E+08 | 1760849 OPER-
protocol 13:45:30 | 13:47:49 | ATION
INTERMAL | INTER- Wifi Management | INTER- udp 514 UDP 514 SYSLOG 2824~ 2024~ | MAN- | UNRAT- | 71 UN-
NAL NAL_TO_IN- Protocol 18-83 18-20 | AGE- 1] RATED
10.1.61.8 u 10.1.30.8 1) TERNAL 17879 68530792 | 546318 et
13:45:32 | 13:47:45
PUBLIC SECURE Mz Backend INTER- udp 2056 | UOP 2056 2024- 2024- | NET- | UNRAT- | 71 UN-
NAL_TO_IN- probably Cisco 18-83 16-26 [WORK | ED RATED
192.168.1.8 u 18.1.28.8 u TERNAL Metfiow/ TPEIX 135395 4.TIE+9 | 35194612 OPER-
Protocol 13:45:35 | 13:47:47 | ATION
SECURE PUBLIC Backend DAZ INTER- icmp 8 ICMP Protocol 2824- 2024- | NET- | UNRAT- | 64 UN-
NAL_TO_IN- Code: Not 18-83 18-26 | WORK | ED RATED
16.1.20.8 u | 19236818 [TERRAL available 39355 9.11E+88 | 5352692 OPER-
13:45:40 | 13:47:50 | ATION
INTERMAL | SECURE Manage- | Backend INTER- icp |8 ICHP Protocol 2028- 2024- | NET- | UNRAT- | 64 UN-
went NAL_TO_IN~ Code: Nt 18-83 16-26 [WORK | ED RATED
18.1.30.8 u 18.1.28.8 u TERNAL available 43138 2.19E+09 | 7963995 OPER-
13:45:45 | 13:47:55 | ATIN

Table 10.2 : A sample of a real flow matrix

As you can see, we have the following values added:

e Source zone

e Destination zone

e Source subnet

e Destination subnet
e Source subnet description
e Source destination description

This can give us many more elements to classify our traffic relating to the
complexity of our network. Maybe we have just a simple frontend/backend
one, or we have an OpenStack infrastructure with several VPCs, and we can
group traffic by source and destination VPC. We also have the capability to
estimate traffic usage more precisely.
Being created as a CSV file, the flow matrix can be easily imported into
your favorite spreadsheet, such as Excel or LibreOffice, and used for the
previously described scopes.
You can easily retrieve the flow matrix by downloading the above-said file
with a tool like FileZilla from the FlOwer collector system, or you can install
the FlOwer Development Environment along with the FlI0wer RTE and write
your own Python3.x scripts to retrieve it and properly use it. In the following
example, we will use the provided FlOwer Python module to interact with
the running server using its authenticated and encrypted API over TCP port
7443.
import argparse,socket,ssl
import hashlib
try:

import simplejson as json
except ImportError:

import json
import time
import tempfile
import shutil
import datetime
import zipfile
import pprint
import getpass
import platform
import os, sys, csv
import flOwernet as flnet

from tabulate import tabulate
import pprint
def comma_format(b):
r = str("{:,}".format(b))
return r
def size format(b):
if b < 1024:
h = ‘%i’ % b + ¢ bytes’
elif 1024 <= b < 1048576:

h = '%.1f" % float(b/1024) + ' KBytes'
elif 1048576 <= b < 1073741824:
h = '%.1f' % float(b/1048576) + '
MBytes'
elif 1073741824 <= b < 1099511627776:
h = '%.1f" % float(b/1073741824) + '
GBytes'
elif 1099511627776 <= b < 1125899906842624:
h = '%.1f' % float(b/1099511627776) + '
TBytes'
elif 1125899906842624 <= b:
h = '"%.1f" % float(b/1125899906842624) +
" PBytes'

#r = comma_format(b) + “ (“+h+”)”
r=nh
return r
user = “admin”
pw = "floOwerrox"
server = "10.1.30.222"
server_port = 7443
port = server_port
lista = []
print("Retrieving Flowmatrix from FlOwer
server",server,"at port: ",port)

data_flowmatrix =
flnet.GetFlowMatrix(user,pw,server,server_port)
datasource = data_flowmatrix
if (len(datasource) > 0):

lista.append(

["srcZone","dstZone","srcSubnet", "srcDescr", "dstSubnet",
"dstDescr","flow direction","protocol","dst port","hits"
, 'bytes","packets","NPAR","RULE", "FlowDirection",
"FirstSeen", "LastSeen", "Action","Category"])
for i in range(©@,len(datasource)):

srcZone = str(datasource[1i]
["FlowMatrixEntry"+str(i)]["srcZone"])

dstZone = str(datasource[i]
["FlowMatrixEntry"+str(i)]["dstZone"])

srcNet = str(datasource[i]
["FlowMatrixEntry"+str(i)]["srcSubnet"])

srcDsc = str(datasource[i]
["FlowMatrixEntry"+str(i)]["srcDescr"])

srcMsk = int(datasource[i]
["FlowMatrixEntry"+str(i)]["srcNetmask"])

dstNet = str(datasource[i]
["FlowMatrixEntry"+str(i)]["dstSubnet"])

dstDsc = str(datasource[i]
["FlowMatrixEntry"+str(i)]["dstDescr"])

dstMsk = int(datasource[i]
["FlowMatrixEntry"+str(i)]["dstNetmask"])

protocol= str(datasource[i]
["FlowMatrixEntry"+str(i)]["ipProtocol"])

dstport = int(datasource[i]
["FlowMatrixEntry"+str(i)]["dstPort"])

NPAR = str(datasource[i]
["FlowMatrixEntry"+str(i)]["NPAR"])
RULE = str(datasource[i]

["FlowMatrixEntry"+str(i)]["RULE"])

hits = int(datasource[i]
["FlowMatrixEntry"+str(i)]["hits"])

packets = int(datasource[i]
["FlowMatrixEntry"+str(i)]["packets"])

bytes = int(datasource[i]
["FlowMatrixEntry"+str(i)]["bytes"])

flowdir = str(datasource[i]
["FlowMatrixEntry"+str(i)]["FlowDirection"])

first = str(datasource[i]
["FlowMatrixEntry"+str(i)]["FirstSeen"])

last = str(datasource[i]
["FlowMatrixEntry"+str(i)]["LastSeen"])

action = str(datasource[i]
["FlowMatrixEntry"+str(i)]["action"])

category= str(datasource[i]
["FlowMatrixEntry"+str(i)]["trafficCategory"”])

lista.append([srcZone,dstZone,str(srcNet)+"/"+str(srcMsk
), srcDsc,
str(dstNet)+"/"+str(dstMsk),dstDsc,flowdir,protocol,dstp
ort,hits,bytes,packets,NPAR,RULE,flowdir,first,last,acti
on,category])
try:
if (platform.system() == 'Windows'):
myfile = open('flowmatrix.csv',
'bw',encoding="utf-8")
else:
myfile = open('flowmatrix.csv',
'w',encoding="utf-8")
writer =
csv.writer(myfile,quoting=csv.QUOTE_ALL,lineterminator="
\n")

writer.writerows(lista)

myfile.close()
except:
print("Can't write flOwmatrix.csv")
pprint.pprint(datasource)

In the preceding code example, we connect to the running FlOwer server, get
the instant snapshot of the flow matrix, download it, save it as a Comma
Separated Value (CSV) file, and make a pretty print of it in a way that can
be easily used by a tool like grep and so on.

Capacity planning

The flow matrix is not only a tool for security and traffic visibility but also
highly valuable for capacity planning. Capacity planning ensures that a
network can handle current and future traffic demands without performance
degradation. By mapping and analyzing the flows in a network, the matrix
provides insights into bandwidth usage, traffic patterns, and potential
bottlenecks.

It is often tough to estimate how much bandwidth will be used in a particular
context, be it a new application or a well-established one. Nowadays, we
consider it a bare minimum to have one or two (for high availability) 1Gbit
connections inside our network, but depending on the application, it can be
too many or too few. For example, think of a file-sharing system serving
files to internal customers using NFS. We have over 500 clients who are
continuously writing metering data for our NFS. We have 15k rpm drives
backed by fast SSD for initial writing using ZFS, but our server has just a
couple of gigabits. The result is that the network pipe is always full, and the
server is perceived as slow, despite the bottleneck IS in the network part.
Probably, providing a full 25 Gbit network path can turn the situation
around.

Maybe instead of storing metered data, our file-sharing server is used by a
bunch of Virtual Desktop Infrastructure (VDI) servers and the VDIs, once
started, just run as normal Office desktops, with minimal I/O on the file-
share. Still, the desktop protocol (VMware BLAST, RDP or X11) is killing
the gigabit connection, and a 10Gbit network path can save the situation. But
we need 10Gbit not on the file-sharing server, but on the VDI servers where

the thin clients connect!

Another example of the opposite case could be a company that has some
2Mbit Wireless connections to a few nearby shops that use them only for
end-of-day data synchronization of cash flows with the main office. In that
case, probably a 100Mbit infrastructure for that network part would be more
than enough.

The key aspects of capacity planning with a flow matrix are:

e Traffic visibility: The matrix gives a clear view of the traffic flows
between different network entities, including source, destination,
protocol, and volume.

e Baseline establishment: It helps establish a baseline for normal traffic
patterns, including average and peak usage for each flow, which is
crucial for predicting future capacity needs.

e Bottleneck identification: By analysing flow volumes, the matrix
identifies over-utilized links or under-provisioned network devices.

e Forecasting future demand: Historical data from the matrix helps
predict traffic growth trends and guides infrastructure scaling decisions.

To successfully use the flow matrix built by FlIOwer, you will simply need:
e Analyse traffic patterns:
o Volume analysis: Identify high bandwidth flows that may require
optimization or scaling.

o Peak usage: Note peak traffic periods and associated entities or
applications.

o Protocol trends: Determine which protocols consume the most
bandwidth (for example, HTTP/HTTPS, FTP, VoIP).

e Identify bottlenecks:

o Highlight network links or devices operating near or at capacity.

o Example: A link between the web and application tiers frequently
exceeds 80% utilization, indicating potential congestion.

e Forecast future needs:
o Use historical data to project future traffic growth:

» Seasonal patterns (for example, e-commerce traffic spikes during

holidays).
» Organizational changes (for example, adding new services or
users).

o Calculate the required bandwidth increase or device upgrades for
each flow.

e Plan and implement upgrades:
o Upgrade network infrastructure based on the matrix's findings:

» Increase link capacity for over-utilized connections.
» Optimize traffic routing or load balancing.

» Add more devices or instances (for example, additional servers or
network switches).

Someone could argue that simple SNMP monitoring can reveal saturated
links, and this is true, but capacity planning has several other applications
like:
e Data center scaling: Monitor traffic between application servers,
database servers, and storage systems to ensure sufficient bandwidth as
user demand grows.

o Example: Adding a 10 Gbps link between web and database tiers
based on matrix analysis.

e WAN optimization: Use the matrix to analyse traffic between branch
offices and the central data center. If the matrix shows high usage,
consider upgrading MPLS links (if you use them) or upgrading the links
of the saturated branches.

e Cloud migration: For hybrid cloud environments, the matrix helps
predict bandwidth requirements between on-premises systems and cloud
Services.

o Example: Allocating sufficient bandwidth for data replication flows
to a cloud provider.

e VoIP and video traffic planning: Use the matrix to evaluate the impact
of latency-sensitive traffic (like VoIP or video conferencing) on existing

infrastructure.

o Example: Reserving or prioritizing bandwidth for VoIP flows
during office hours.

e IoT network growth: In loT-heavy networks, the matrix tracks device-
to-device and device-to-server traffic to ensure the network can handle
increasing device numbers.

The flow matrix cannot help you decide how to design a brand-new
infrastructure; only experience and budget can do that. However, it can give
you tremendous insight into what is happening in the running production
infrastructures, easing the task of deciding whether network infrastructure
upgrades are needed and which ones.

Network security with the flow matrix

Flow matrix is a powerful conceptual and visualization tool used to
understand, monitor, and secure network traffic. It provides a structured way
to analyze communication patterns between entities (for example, devices,
servers, users) in a network.

The matrix helps identify allowed, suspicious, or malicious traffic by
mapping connections and ensures security policies are enforced.

Network flow matrix is instrumental in enhancing network security through
the following means:

e Traffic visibility:
o A flow matrix provides visibility into who communicates with

whom on the network. It identifies legitimate and potentially
unauthorized connections.

o Example: Ensuring a web server can connect to a database but not
directly to an internal development environment.

e Policy definition and enforcement:

o The matrix helps define and enforce network security policies by
specifying permissible traffic flows.

o Example: Only HTTP(S) traffic is allowed from external clients to
web servers, while SSH access is restricted to administrators.

Threat detection:

o Abnormal flows (for example, unexpected communication between
unrelated systems) indicate potential threats like lateral movement
during an attack.

o Example: Detecting an internal workstation communicating directly
with a database server, which might signal a compromised device.

Microsegmentation:
o Microsegmentation divides the network into smaller, isolated zones
with strict control over inter-zone communication.

o Example: Using the matrix to enforce isolation between production,
development, and testing environments.

Incident response:
o During incidents, a flow matrix can help pinpoint anomalous traffic
patterns and the scope of compromise.

o Example: Tracking down unauthorized external connections
initiated by malware.

Compliance and auditing:

o Regulatory requirements like PCI DSS, GDPR, or HIPAA often
demand detailed records of data flows. The matrix simplifies
auditing by documenting traffic flows and policies.

The steps to use a network flow matrix for security are as follows:

1. Define entities: Identify all entities (for example, servers, user groups,
IoT devices, VPC) and group them based on roles or network zones.
You can easily do it in Flower by adding the Zone attribute in the
internal network’s definition.

2. Map traffic flows: Document existing traffic flows capturing data with
Flower and let it build the flow matrix for you.

3. Establish a baseline: Determine normal traffic patterns and flag
unusual or unexpected flows.

4. Apply security policies: Update firewalls, ACLs, or SDN rules to
enforce desired flows.

5. Monitor continuously: Continuously monitor the network for

deviations from the expected flow matrix.

6. Automate responses: Use automated tools for real-time threat detection

and mitigation based on the matrix.

The benefits of using a network flow matrix are:

Improved security: Minimizes attack surface by restricting
unnecessary communication.

Enhanced visibility: Clear understanding of data flows aids in decision-
making.

Efficient incident response: Identifies and isolates malicious activity
faster.

Compliance: Simplifies auditing and ensures adherence to regulations.

Proactive defense: Detects and prevents potential threats like lateral
movement.

This can be even more efficient than inspecting single encrypted traffic
packets (if you can) one by one looking for always changing dynamic
malware patterns.

Conclusion

As we have seen, by leveraging the flow matrix, organizations can achieve a
robust, scalable, and efficient approach to securing their networks while
enabling better monitoring and control over data flows. However, besides
network security and capacity planning, the flow matrix has other useful
applications that we will describe in Chapter 11, Firewall Rules
Optimization Use Case.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 11

Firewall Rules Optimization Use
Case

Introduction

In Chapter 10, Understanding the Flow Matrix, we delved into the main
use cases for the flow matrix, discussing capacity planning and security. In
this chapter, another use case will be discussed, based on the real
experiences gained in the field to achieve a firewall rules optimization goal.
Ironically, this 1s the practical reason for which the flow matrix has been
implemented in FlOwer, but as we have seen, in time it evolved quite
substantially from the initial target.

Structure

In this chapter, we will discuss the following topics:
e Scenario

Understanding firewall rules optimization criteria

An interesting discovery

Using simple shell scripting to split flow data

Real-world case study

Objectives

This chapter describes a real use case of NetFlow data to approach a pretty
complex problem of firewall optimization rules in a complex (but now
becoming quite common) environment.

By the end of this chapter, the reader will better understand the capabilities
of the tools he has available.

Scenario

In 2017, the author was hired as a freelance to overview Unix & network
security as part of a project regarding deploying two highly integrated data
center solutions in two different geographical sites by a huge Asian
company for an Italian Telco.

The project was really intriguing. It involved a customized OpenStack
solution with network devices managed using an integrated SDN solution
from the Asian company. The solution was also integrated with VMWare
virtualization infrastructure and provided VPCs protected by very powerful
terabit speed firewalls. We have already met VPCs in Chapter 3, Network
Topologies, and we have seen that they are the foundation for the so called
cloud solutions, which was the main topic of the project.

The project was very ambitious and the author was also in charge of
providing an integrated identity solution, which he successfully deployed
using 14 geographically distributed replicas of FreeIPA (the Red Hat
solution for identity management) integrated with FreeRadius, obviously
running as virtual machines on the platform itself. The deployment went
smoothly because he knew exactly the flows required for synchronization
between the replicas and the ones required to make the service available to
the entire platform.

The telco company decided to move their applications to the new
infrastructure, compacting them in isolated VPCs. Each application had its
own VPC, so the required separation criteria was effectively met and the
different application teams started working in parallel to move the
applications in the VPC. But a problem arose.

The OpenStack framework which was going to be deployed (which was

stable although quite old) was heavily customized by the Asian vendor and
unfortunately, the integrated SDN software part for the management of the
Terabit firewalls was still relatively young. Therefore, its web interface only
allowed for the punctual entry of rules with individual hosts and individual
ports, leading to a proliferation of rules for all the VPCs. This by itself
would not have been a big issue. Still, for their design, unfortunately, the
Terabit firewalls had a global limit of 10000 rules, that was almost reached
before the end of application migration.

The different applications teams, following the VPC logic, had separated
access to each of their own VPCs for the applications, but there were some
different kinds of problems, such as:

e Communication between teams because of pressure on delivery dates.

e Communication between teams because of different languages (Italian,
English, Asian language).

e Traffic flows required by the application were not available or were
incomplete, except in some cases.

e Limited web interface and strict rules requirements from the customer
lead to an incredible proliferation of rules.

In this scenario, we needed to find a solution before the rules limit was
exhausted, and so we started thinking about possible solutions. One
hypothesis was to analyze the firewall logs, but the firewall was configured
to log only the dropped traffic, and it was considered impractical because of
the lack of information and logs size. Logging everything would be even
worse because the size of the logs would be impractical, and a performance
penalty was just waiting to happen. An additional problem was that
successfully migrated applications could not be rolled back without causing
data disruption; at least, it was very complicated, so no cleanup was
possible. A firmware release to overcome the limit would have taken
months, so this path could not be considered. After some reasoning, in the
end, only the classical tuple [Src addr, Src port, Dst addr, Dst port, protocol,
service, hits, bytes] was really needed to perform analysis, and data
aggregation would be the mandatory step to make it successful.

The only possible solution was to receive flow data from the firewall,
classify it, and create different sets of rules. Moreover, as the integrated

SDN management code for the firewall was still immature, the decision was
taken to disable the firewall rules management by SDN.

So, an analysis was done about the feasibility of the plan and it was agreed
to use FlOwer to receive the traffic flows, and it was enhanced to create the
flow matrix and keep it updated.

In the meanwhile, we analyzed the firewall rules and decided to split them
into different groups:

e QGeneric infrastructure related rules.
e (Generic common rules that were shared between all the VPCs.
e VPC specific rules.

For the first two groups, having designed most of the infrastructure
network, it was not so difficult to come up with a clear ruleset, but for the
last one (the VPC specific rules), the Flow Matrix was really needed.

The first two groups contained basic rules such as public DNS usage,
internal DNS usage, SYSLOG to internal collectors,
LDAP/RADIUS/Kerberos authentication flows, Privileged Access
Management (PAM) to VPCs and infrastructure, VM Ware-related traffic,
SDN-related traffic, and so on.

The VPC rules were then created using Fl0wer generated flow matrix.

Understanding firewall rules optimization criteria

Therefore, after a lot of coding, the flow matrix feature was implemented
and we immediately deployed a couple of FlOwer instances in the
infrastructure, letting it collect about two weeks of data while producing the
matrix in real time for both datacenters.

Luckily, the flow idiom spoken by the terabit firewalls was NetStream,
which is basically NetFlow version 9 with some extra data, and it worked
without problems. So, no code adaptations on FlOwer side was needed. It
should also be noticed that on each of these firewalls we had only one
instance of flow exporter option, and this makes sense since having an
instance for each VPC would be very complex for the vendor. Moreover, it
would not allow us to receive the extra-VPC traffic.

A good job of describing the internal networks to FlIOwer was done, using

the zone field as the VPC, so that we could have both generic traffic (which
unsurprisingly matched what we crafted manually for the first two above
points) and intra-VPC traffic, if any.

A great suggestion is for organizations (in large ones, it is quite mandatory)
to use a network source of truth tool like IP Address Management
(IPAM). Be it a free one like Netbox or a completer and more integrated
with DNS and DHCP like Infoblox, this kind of tool can really help when
facing network problems.

Normally, the network is managed by a bunch of people, who are the
company's historical memory. However, when there is outsourcing or
people's retirement, minor networks or minor devices can be forgotten.
When you do traffic analysis, you find them and do not know their scope,
so you never know the impact of a change on them.

Nonetheless, we were working on a new infrastructure, so networks were
well known. Once the flow data collection process was complete, it gave us
a clear idea of the traffic that was happening.

At this point, grouping the traffic by VPC allowed us to finely tune the
ruleset with real and effective traffic.

An interesting discovery

Incidentally, while analyzing the flow traffic, we discovered a combo of a
lot of strange http and several (CIFS) connections to several servers around
the world, from one of the jump hosts (a Windows system) that were used
to connect to the new infrastructure.

Further investigations revealed that the contacted IP addresses via http
protocol were becoming quite famous in those days, and there was always a
search for an unregistered domain. We started analyzing the jump host and
it was quickly revealed that the machine was infected with the infamous
WannaCry ransomware
(https://en.wikipedia.org/wiki/WannaCry_ransomware_attack).
Luckily, our security team was able to remove it before the encryption
process started, and so no further damage was done.

As you can see, we can learn some lessons from this discovery:
e Even the most structured and security-aware companies can fall due to

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

human error.

» All active security controls (firewalls, PAM, Antivirus, and so on) can
fall after some new threat.

e Flow data analysis goes beyond statistics, and it is a proactive way to
improve your security posture.

» Network security nowadays is a must that cannot be procrastinated.

Using simple shell scripting to split flow data

If you had the opportunity to play a bit with FlOwer, you should have seen
that it comes with a rich and powerful Python API and an open-source CLI
that we can use to retrieve the information that we need.

The workflow that was decided was to extract flow data grouped by VPC to
develop different sections of rules for the terabit firewall. Therefore, we
needed to split the flow matrix into groups, one per VPC. A simple Unix
shell script with a couple of tools could do the job very easily.

In our case, we need two key pieces of information from FlOwer:
e The flow matrix (flowmatrix.csv)

e The internal network definition to reconcile the matrix with the VPCs
(internal_networks.neo4j)

A single command, as we can see in the script, can retrieve this information
for us, providing it in a handy CSV format that we can use.

A very handy tool that we can use and integrate in scripting is the
wonderful SQLite, which is a simple local database (no network, no
configuration, just a single binary) running on Linux machines that provides
a standard SQL syntax to manipulate the needed data. Obviously, it can
import standard CSV files and create reports from the command line, so it
is a quite natural integration into a bash shell script.

We then load the provided CSV flow matrix information into SQLite3,
iterate on the VPCs with a simple cycle, and extract the flow matrix specific
to that VPC.

#!/bin/bash

rm -f flowmatrix.csv internal networks.neo4j
flowmatrix.db *.csv summary.txt

Retrieve the flow matrix and the internal networks
/opt/flower/bin/flcli admin flOwerrox 10.1.30.210 7443
/flowmatrix 2>&1 > /dev/null
for ease of use, load everything on a small database
to perform some queries
sqlite3 -csv flowmatrix.db ".import flowmatrix.csv
flowmatrix"
sqlite3 flowmatrix.db "CREATE INDEX srczone on
flowmatrix(SRC_ZONE)"
sgqlite3 flowmatrix.db "CREATE INDEX dstzone on
flowmatrix(DST_ZONE)"
for i in “cat internal_networks.neo4j | grep -v ":ZONE"
| awk -F, '{print $1}' | sort | uniq | sed 's/\"//g'
do

echo "Processing "$i

Create per-VPC flow-matrix table in CSV for
further analysis

sqlite3 -header -csv flowmatrix.db "SELECT *
FROM flowmatrix where\ SRC_ZONE=\""$i"\" OR
DST_ZONE=\""$i"\" ORDER BY\
SRC_ZONE,SRC_SUBNET,DST_SUBNET,CAST(HITS AS INTEGER)
DESC" > TRAFFIC-$i.csv

echo "Zone: "$i" Flows: "“wc -1 TRAFFIC-$i.csv’
>> summary.txt
done

Once the flow matrix is imported into the small database, a simple loop for
the current SRC_ZONE (our VPC) will group and extract all flow data for
that VPC, exporting it again in a handy CSV file that can be loaded in a
spreadsheet for analysis and discussion.

This 1s exactly the script that was used to perform the firewall cleanup, so
once we had the live flows documented in the Flow matrix, we used them to
tune up the firewall ruleset specific for the chosen VPC.

The so-obtained flow matrix was then confronted with the application team
to have the proper feedback, and in the end, translated in Firewall rules for

the Terabit firewall. Once the new ruleset for the VPC was ready, we
identified wrong rules for the VPC and put the new ruleset in front of the
old rules (cleaning up the wrong rules counters). Then, after some days, we
checked on the firewall the number of hits of the old ruleset, which was
zero in all cases since the new rule encompassed the old rules. In the end,
we proceeded with cleaning up the old and useless ruleset, freeing up rules
for the other VPCs.

Conclusion

As we have seen, the flow matrix can be used in several use cases.
Investigation of real network traffic can reveal many things, from unknown
threats to misused or misconfigured devices. Of course, it can be time-
consuming, like it was when it came to firewall logs analysis some years
ago. However, it is a very proactive way of improving global network
security posture for companies. Flower does a lot of the job for us and can
be further automated, as we can see in the next chapter.

CHAPTER 12

Simple Network Anomaly
Detection System Based on Flow
Data Analysis

Introduction

This is the last chapter of our journey in the flow data analysis, and we will
see how we can detect most network anomalies by means of our FlOwer
flow-data collector. By performing near-real time analysis on incoming
flows and blocks of flow, we can identify threats and network anomalies in
a much faster way than using old-school tools like Wireshark or DPI (which
are always helpful, but more limited). Let us get a glance at major network
threats and how to deal with them.

Structure

In this chapter, we will discuss the following topics:
e Scenario
e Common cybersecurity threats

Handling DNS threats

Handling NTP threats

Handling BGP threats

e Handling P2P threats

e Dealing with TOR threats

e Dealing with covert channels

* Dealing with horizontal and vertical scans

e Dealing with VTEP and SDN controller attacks
e Automating checkups

Objectives

This chapter focuses on how to identify network anomalies and data
breaches by means of using the flow matrix and some Python scripting
using Pandas. It will show the reader how to automate continuous checking,
trying to address the very long breach discovery-date of the breach event.

Scenario

Let us say that we want to improve our network posture. We have already
deployed firewalls, IDS, and a Network Source of Truth (NSOT) and
properly configured our Fl0wer network monitoring infrastructure.

FlOwer is collecting data both in Elasticsearch and Clickhouse. It is
constantly updating the flow matrix and traffic data is charted on our
Elasticsearch. But we want to have a daily report about the situation of
threats inside our infrastructure.

This can be accomplished with a structured approach:
e Proper configuration of the FlIOwer monitoring features
e A script that can be scheduled in a crontab to be run regularly

But let us try to understand first which are common threats that we should
monitor for.

Common cybersecurity threats

There are several aspects of a network infrastructure that are worth
monitoring and for several reasons.

Let us see the most common ones:

e Domain Name Servers (DNS) usage connections

e Network Time Protocol (NTP) connections

e Border Gateway Protocol (BGP) connections

* Peer to Peer file transfers (P2P) connections

e The Onion Router (TOR) connections

e Covert channels

e Network scans

e VTEPs and SDN connections
Monitoring the above protocols and connections can identify several
threats, and a firewall will probably never identify most of them.
Let us see them one by one.

Handling DNS threats

The DNS is a fundamental component of the Internet, translating human-
readable domain names (like example.com) into IP addresses that
computers use to locate each other. However, DNS's openness and critical
role make it a common target for various network attacks. DNS-based
attacks exploit vulnerabilities or misuse DNS functionality to disrupt
services, redirect traffic, or steal data.

Let us see some common type of DNS attacks:

e DNS spoofing (cache poisoning): An attacker inserts malicious data
into the DNS cache of a resolver, causing users to be redirected to
malicious sites when they try to access legitimate domains. Impact can
be that users may be tricked into entering sensitive information on fake
websites or that users could be redirected to sites hosting malware.

e DNS tunneling: Encapsulates other types of traffic (for example,
HTTP, SSH) within DNS queries and responses. This can be used to
bypass firewalls and exfiltrate data covertly. We already saw this in
Chapter 9, Flow Data Analysis: Exploring Data for Fun and Profit.

e DNS reflection attack: Attackers use a DNS server to reflect traffic
toward a target by sending queries with a spoofed source IP (the
target's IP). The impact is that it overwhelms the target with a large
volume of DNS responses. That is why it is a good practice to keep

secret the internal IP addressing of a company.

Flower can be configured to monitor DNS traffic (port 53 TCP/UDP) and
alert on connections to servers not listed as legitimate. It is just a matter of
adding the proper IPv4 addresses to
/opt/flower/iplist/dns4list.txt and
/opt/flower/iplist/dns6list.txt for IPv6 DNS servers.

Once done, FlOwer will report the unqualified DNS servers in its events so
you can fix the clients for the (hopefully) existing network security policy,
pointing them to the safe internal DNS servers.

This script connects to Clickhouse, retrieves events from the past day, and
exports them to a CSV file for analysis:
#!/opt/flewer/bin/flopy

import os

import time

import csv

import pandas as pd

import datetime as datetime

import pathlib

import time

import 1z4

from os import system

from collections import Counter

from tabulate import tabulate

from datetime import timedelta

from datetime import datetime

import clickhouse_driver as CH

from clickhouse_driver import Client
def dumpcsv(dataframe,filename):

dataframe.to_csv(filename, encoding='utf-8',
index=False)

server = "10.1.20.17"
csvoutput = "/tmp/alerts.csv"
days =1

try:
conn = CH.Client(server,
secure=False,
verify=False,
compression=True)
except:

print("Can't connect to Clickhouse server at:
"+server)

sys.exit(2)
Let’s retrieve data since yesterday
datefrom = datetime.now() - timedelta(days)

dateto = datetime.now()

strFrom = datefrom.strftime("%Y/%m/%d %H:%M:%S")
strTo = dateto.strftime(“%Y/%m/%d %H:%M:%S”)
print("Retrieving data into "+csvoutput)

try:

Load the data into a Pandas dataframe

df = conn.query_dataframe ("SELECT
TIMESTAMP, LEVEL,CATEGORY, SOURCE,MESSAGE FROM
FLOWER.EVENTS WHERE LEVEL LIKE \'%POLICY%\' AND MESSAGE
LIKE \'%DNS%\' AND (TIMESTAMP >=
toDateTime(\'"+strFrom+"\"') AND TIMESTAMP <=
toDateTime(\'"+strTo+"\')) ORDER BY TIMESTAMP
DESCENDING;")
except:

print("Can't retrieve data from Clickhouse
server at: "+server)

sys.exit(2)
print("Data fetched, formatting ...")
dumpcsv(df,csvoutput)
print(tabulate(df, headers='keys', tablefmt='psql'))

We will use this script as the basis for all the other examples.

Handling NTP threats

The NTP is used to synchronize clocks across computer systems over IP
networks. While NTP plays a critical role in maintaining accurate time in
distributed systems, it is vulnerable to several types of attacks. Exploiting
NTP vulnerabilities can disrupt services, degrade network performance, or
assist in further attacks. It is also a common source of problems for Active
Directory authentication problems with Kerberos tickets.

A common type of NTP attack in the inside network is the time
synchronization attacks. In this type of threat, attackers manipulate NTP
responses to provide incorrect time information to clients, leading to
disruptions in time-sensitive applications. The impact will be
Authentication failures (for example, expired certificates), Log
discrepancies (hindering forensic analysis), and out-of-sync processes,
causing errors in distributed systems. Also, NTP can also be used in covert
channels to exfiltrate data (the extension field and MAC fields can be used
for this purpose) and a Python script to create a client/server covert-channel
solution can be built easily by code-generating Ais like ChatGPT or
DeepSecek.

Of course there are several other types of attacks, like joining an NTP based
DDoS, but this can also be a source of malfunctions, so for now let us focus
on how to be sure that all the infrastructure is aligned with the proper
Servers.

Again, FlOwer allows us to configure a list of legitimate NTP servers and
notice NTP traffic (port 123 TCP/UDP) to unknown servers.

It is just a matter of adding the proper IPv4 addresses to
/opt/flower/iplist/ntpd4list.txt and
/opt/flower/iplist/ntp6list.txt for IPv6 NTP servers.

Once done, FlOwer will report in its events the unqualified NTP servers so

you can fix the clients for the (hopefully) existing network security policy
pointing them to the safe internal NTP servers.

Like before, we can reuse the same script by simply changing the query to
be like:

df = conn.query_dataframe ("SELECT

TIMESTAMP, LEVEL ,CATEGORY, SOURCE ,MESSAGE FROM
FLOWER.EVENTS WHERE LEVEL LIKE \'%POLICY%\' AND MESSAGE
LIKE \'%NTP%\' AND (TIMESTAMP >=
toDateTime(\'"+strFrom+"\') AND TIMESTAMP <=
toDateTime(\'"+strTo+"\')) ORDER BY TIMESTAMP
DESCENDING;")

Handling BGP threats

BGP is a core component of the Internet's routing infrastructure, responsible
for exchanging routing information between Autonomous Systems (AS).
Despite its importance, BGP lacks inherent security mechanisms, making it
susceptible to various attacks. It is mainly used in large organizations but
also in SDN architectures. A good practice is to keep track of the running
BGP infrastructure by monitoring with tools like ExaBGP
(https://github.com/Exa-Networks/exabgp).

Here is a list of some possible BGP network attacks:

* BGP route hijacking: An attacker announces incorrect BGP routes to
redirect or intercept traffic. Possible impacts are that the attacker can
monitor traffic before forwarding it to the legitimate destination or may
drop traffic, causing DoS.

e BGP session hijacking: An attacker intercepts and takes control of an
established BGP session between two routers. Possible impacts are
traffic redirection or interception and manipulation of routing tables for
malicious purposes

* BGP session reset attack: An attacker disrupts an active BGP session
by sending forged TCP RST (reset) or FIN (finish) packets. Since BGP
sessions rely on long-lived TCP connections, an attacker sends spoofed
RST or FIN packets with matching sequence numbers to terminate the
session. If successful, the attack results in disruption of routing updates
and temporary loss of connectivity.

e BGP prefix deaggregation (routing table flooding): An attacker
floods the network with excessively granular route announcements,
overwhelming routers. Instead of announcing an aggregate route (for
example, 192.0.0.0/16), the attacker announces numerous sub prefixes

https://github.com/Exa-Networks/exabgp

(such as, 192.0.1.0/24, 192.0.2.0/24). The results are increased memory
and CPU load on routers, resulting in network instability or crashes

Yet again, FlOwer allows us to configure a list of legitimate BGP peers and
notice BGP traffic (port 179 TCP) to unknown addresses.

It is just a matter of adding the proper IPv4 addresses to
/opt/flower/iplist/bgp4list.txt and
/opt/flower/iplist/bgp6list.txt for IPv6 NTP servers.

Once done, FlOwer will report in its events the unqualified BGP peers so
you can take proper counter measures to secure your BGP infrastructure.

Like previously, we can reuse the same script by simply changing the query
to be like:

df = conn.query_dataframe ("SELECT

TIMESTAMP, LEVEL ,CATEGORY, SOURCE ,MESSAGE FROM
FLOWER.EVENTS WHERE LEVEL LIKE \'%POLICY%\' AND MESSAGE
LIKE \'%BGP%\' AND (TIMESTAMP >=
toDateTime(\'"+strFrom+"\') AND TIMESTAMP <=
toDateTime(\'"+strTo+"\"')) ORDER BY TIMESTAMP
DESCENDING;")

Handling P2P threats

Using P2P tools within a corporate network can introduce a variety of risks
that compromise security, compliance, productivity, and network stability.
While P2P applications are useful for file sharing, collaborative projects,
and decentralized communication, their use in corporate environments is
often discouraged due to the following risks:

e Malware and viruses: P2P networks are notorious for hosting
malicious files disguised as legitimate ones. Users inadvertently
download malware, spyware, or ransomware from unverified sources,
or some P2P applications themselves may contain bundled adware or
harmful components. The impact can be as bad as malware propagation
within the corporate network or even data breaches and system
compromises.

e Data exposure: P2P tools may unintentionally share sensitive files

stored on a user’s device. Misconfigured P2P software settings allow
sharing of entire folders, exposing sensitive corporate data. Shared files
can be indexed by P2P search engines, making them accessible to
unauthorized users, resulting in leakage of proprietary or confidential
information, violation of data protection regulations, and loss of trust.

o Intellectual property infringement: P2P tools are often used to share
copyrighted materials, such as software, music, and videos. Employees
download or distribute copyrighted content without proper licenses.
The impact is legal action against the company for copyright violations
leading to fines, penalties, and reputational damage

e Bandwidth consumption: P2P tools often consume large amounts of
network bandwidth. With continuous downloading and uploading of
files by multiple users simultaneously participating in P2P activities.
This can lead to network congestion and reduced performance for
critical business applications and increased operational costs due to
higher bandwidth usage.

e Loss of productivity: Employees using P2P tools for non-work-related
purposes (for example, downloading media) can distract from business
objectives. Work time is spent on P2P activities unrelated to job
functions, reducing employee productivity and misusing company
resources.

FlOwer has very good capabilities to classify P2P traffic, so our query is still
quite simple if we reuse the previous script.

df = conn.query_dataframe ("SELECT
FLOW_DATE_RECEIVED,IP Version, IP_SRC_FLOWEXPORTER,
IP_PROTOCOL, FLOW_BYTE_DELTA_COUNT,
FLOW_PACKET_DELTA_COUNT,IP_FLOW DIRECTION, NPAR,
CATEGORY, SRC_ADDRESS,SRC_PORT,DST_ADDRESS,DST_PORT
FROM FLOWER.FLOWS WHERE CATEGORY LIKE \'%P2P%\' AND
FLOW_PACKET_DELTA_COUNT > 10 AND IP_FLOW _DIRECTION LIKE
\’%Internet\’ AND (TIMESTAMP >=
toDateTime(\'"+strFrom+"\') AND TIMESTAMP <=
toDateTime(\'"+strTo+"\')) ORDER BY FLOW_DATE_RECEIVED
DESCENDING;")

Dealing with TOR threats

Using TOR within a corporate network introduces several risks, both
technical and operational. While TOR provides anonymity and privacy for
users, its use in a corporate environment can conflict with organizational
policies, regulatory compliance, and security measures. Let us understand
some of them:

Malware and exploits: TOR traffic can connect to unregulated
websites on the dark web, where malware, exploits, and phishing
schemes are common. If employees access malicious websites, they
could inadvertently download malware that compromises the corporate
network.

Regulatory violations: Many industries are subject to strict data
protection regulations (for example, GDPR, HIPAA, PCI DSS). TOR
traffic complicates tracking and auditing requirements for these
regulations. The impact is that failure to comply with regulatory
standards can result in fines and reputational damage.

Illegal activities: TOR is often used to access dark web marketplaces,
conduct illegal transactions, or engage in cybercriminal activities. If
TOR 1s used for illegal purposes within the corporate network, the
company could be held liable, even if management is unaware.

Attribution challenges: Anonymity provided by TOR makes it
difficult to identify the source of malicious or unauthorized activity,
complicating incident investigations. TOR traffic obscures the origin
and intent of connections, making it difficult for IT and security teams
to detect and respond to potential threats effectively.

Suspicious activity: TOR traffic can trigger scrutiny from Internet
Service Providers (ISP), government agencies, or other external
entities monitoring for criminal activities. A corporate IP address
flagged for TOR usage may attract unwanted attention or legal
investigations.

FlOwer can easily spot the TOR traffic to a very good degree, so our query
is still quite simple if we are going to reuse the previous script.

df

= conn.query_dataframe ("SELECT

FLOW_DATE_RECEIVED,IP_Version, IP_SRC_FLOWEXPORTER,
IP_PROTOCOL, FLOW_BYTE_DELTA_COUNT,
FLOW_PACKET_DELTA_COUNT,IP_FLOW_DIRECTION, NPAR,
CATEGORY, SRC_ADDRESS,SRC_PORT,DST_ADDRESS,DST_PORT
FROM FLOWER.FLOWS WHERE XINFO LIKE \'%ZTOR%\' AND
IP_FLOW _DIRECTION LIKE \’%Internet\’ AND (TIMESTAMP >=
toDateTime(\'"+strFrom+"\') AND TIMESTAMP <=
toDateTime(\'"+strTo+"\"')) ORDER BY FLOW_DATE_RECEIVED
DESCENDING;")

Dealing with covert channels

A network covert channel is a method of transmitting data that hides the
communication, making it difficult to detect by traditional security
mechanisms. These channels exploit legitimate network protocols (like
DNS, NTP, HTTP, HTTPS, and so on) or behaviors to encode and transfer
information covertly. They are often used for data exfiltration, command-
and-control communication, or bypassing security policies. An interesting
repository where you can find and try a bunch of tools is on
https://github.com/cdpxe/NetworkCovertChannels.

Detecting covert channels bypassing a company firewall is challenging, as
these channels are specifically designed to evade standard detection
mechanisms. Covert channels can hide unauthorized communication in
legitimate network traffic, often exploiting protocols, metadata, or other
means of encoding information. It is also difficult to identify them by using
firewall packet inspection since they mostly use encryption technology.

The most common protocols used are:

e DNS: Encoding data in DNS queries and responses. We already have
seen an example in Chapter 9, Flow Data Analysis: Exploring Data for
Fun and Profit.

e HTTP/HTTPS: Embedding data in headers or body content. An
example tool can be found at https://github.com/zaheercena/Covert-
TCP-IP-Protocol.

e ICMP: Using ping packets to exfiltrate data. An interesting
implementation can be found at https://cryptsus.com/blog/icmp-

https://github.com/cdpxe/NetworkCovertChannels
https://github.com/zaheercena/Covert-TCP-IP-Protocol
https://cryptsus.com/blog/icmp-reverse-shell.html

reverse-shell.html.
e« TCP/UDP: Encoding data in sequence numbers, flags, or payloads.

To successfully identify if there are any covert channels inside your
network, you should follow the next steps:

1. Create a baseline normal network behavior: Use network
monitoring tools to establish what normal traffic looks like for your
environment. The flow matrix is an excellent tool to start with. Analyze
patterns such as:

a. Protocol usage (for example, volume of DNS queries).
b. Typical packet sizes and frequencies.
c. Destination addresses and domains.

2. Anomaly detection: You should look for unusual traffic patterns that
deviate from the baseline:
a. High volume DNS queries: Frequent requests to unrecognized or
dynamically changing domains.
b. Unusual ICMP usage: Large payloads or high-frequency pings.
c. HTTP/HTTPS anomalies: Repeated requests to obscure
endpoints, unusual headers, or non-standard URL patterns.
d. Timing irregularities: Traffic with deliberate delays or consistent
intervals between packets.
3. Behavioral analysis: You should monitor for endpoints consistently
communicating with:
a. Unusual domains or IP addresses.
b. Locations outside the typical geographic scope of business
operations.

Consider that in time new threats will appear and new ways of hiding
channels will be discovered and used, so rely on a good traffic baseline with
the flow matrix and always perform behavioral analysis.

In this case, we do not have a pre-built script, but we need to work on
several steps, such as the following:

1. Improve the classification of your traffic in the best possible way.
Bring it to the level that the flow matrix is self-speaking, and you can
immediately identify every single flow to create the baseline of your

https://cryptsus.com/blog/icmp-reverse-shell.html

traffic. FlOwer does a tremendous job in doing this, but if you do not
give it information about your network, hosts, zones, or VPC, it cannot
make miracles. In this, the NSOT provides invaluable help.

2. FlOwer dumps its flow matrix table in
/opt/flower/data/flowmatrix.csv every 10 minutes, so you
can retrieve it via scp/ssh and simply make a difference between the
previous and current one. Carefully check for the differences between
the two versions. In Unix/Linux, since we are dealing with CSV files,
which are basically text files, a simple diff command will reveal the
differences, or if you are running a graphics environment with X11,
xxdiff will be even more visually clear.

3. Investigate these differences carefully, even physically going to the
source hosts (if needed) and performing manual analysis.

4. Make use of flower traffic rules to detect flows with maxpacketsize
oversized for that kind of flow. The maxpacketsize parameter is
computed dividing the bytes by the number of packets in the flow, and
if it exceeds the maxpacketsize, the rule matches. So, if your ICMP
flows towards the Internet and have an average of over 64 bytes
(default for ping on most platforms), something strange could be in
place. Moreover, DNS requests and replies are normally small in size,
so exceeding 512 bytes is an alarm bell.

5. If you make use of geolocation of IP Addresses in FlOwer, you can take
advantage of checking for it in a number of ways (LUA scripts, address
ranges, SQL queries, and so on)

As you can see, there are several ways to discover covert channels, but it is
impossible to describe all possible ways, since threats are always evolving.
Structurally, the usage of an HTTP Proxy (like Squid) in your network
infrastructure is a good way to prevent unsolicited Internet access, but there
are cases where this is overkill or simply cannot be applied. Reframe your
reasoning by applying it to real-life situations.

Dealing with horizontal and vertical scans

Network scanning is a reconnaissance technique used to identify active
devices, open ports, and services within a network. It often precedes

cyberattacks, providing attackers with valuable information about network
vulnerabilities. It can also be used by internal company auditing to verify
the security posture of the infrastructure. But if this is not the case, it is the
prelude of a network breach.

Horizontal scanning involves targeting the same port or service across
multiple IP addresses in a network. An attacker scans a wide range of IP
addresses to identify systems with a specific vulnerability or service. For
example, Scanning all devices in a subnet (for example, 192.168.1.0/24) to
find which ones have an open telnet port (TCP 23)

Vertical scanning involves targeting a single IP address to identify all open
ports and services on that device. An attacker focuses on one device,
probing multiple ports to identify its running services and their versions.
For example, Scanning 192.168.1.10 for open ports (for example, 22, 80,
443, 3389) to enumerate running services.

The risks of having unauthorized scans inside the company network should
be quite obvious and can be summarized in:

e Increased exposure to attacks
e Data exfiltration

e Disruption of services

e Evasion attempts

e Host-specific exploitation

* Privilege escalation

e Endpoint compromise

e Exposure of network topology

Normally, port scans from the Internet should be blocked at the firewall
level if they arrive from the Internet. The problem is when they happen
inside your company network. In that case, only flow-data monitoring can
help. FlOwer, by doing both single flow and group of flows (the so-called
bricks), is quite successful in their detection, reporting them as alarms in
the events database.

Still, we reuse the initial script and change the query to obtain our data.
For horizontal scans:
df = conn.query_dataframe ("SELECT

TIMESTAMP, LEVEL , CATEGORY , SOURCE ,MESSAGE FROM
FLOWER . EVENTS WHERE MESSAGE LIKE \'%HORIZONTAL%\' AND (
TIMESTAMP >= toDateTime(\'"+strFrom+"\') AND TIMESTAMP
<= toDateTime(\'"+strTo+"\')) ORDER BY TIMESTAMP
DESCENDING;")

For vertical scans, the flows database in Clickhouse is updated with the
proper NPAR, so the query will be changed into something like:

df = conn.query_dataframe ("SELECT
FLOW_DATE_RECEIVED,IP_Version, IP_SRC_FLOWEXPORTER,
IP_PROTOCOL, FLOW_BYTE_DELTA_COUNT,
FLOW_PACKET_DELTA_COUNT, IP_FLOW_DIRECTION, NPAR,
CATEGORY, SRC_ADDRESS, SRC_PORT,DST_ADDRESS, DST_PORT
FROM FLOWER.FLOWS WHERE NPAR LIKE \'%VERTICAL%\' AND (
TIMESTAMP >= toDateTime(\'"+strFrom+"\') AND TIMESTAMP
<= toDateTime(\'"+strTo+"\')) ORDER BY
FLOW_DATE_RECEIVED DESCENDING;")

Dealing with VTEP and SDN controller attacks

Virtual Tunnel Endpoints (VTEP) are critical components of network
virtualization, especially in environments using Virtual Extensible LAN
(VXLAN). VTEPs encapsulate Layer 2 Ethernet frames into Layer 3
IP/UDP packets for transport across an IP network, enabling scalable and
flexible network overlays.

While VTEPs enhance network scalability and isolation, they also introduce
potential vulnerabilities. Attackers targeting VTEPs can exploit
misconfigurations or inherent protocol weaknesses to disrupt services,
intercept data, or gain unauthorized access.

Some of the common attacks on the VTEP side can be:

e VXLAN traffic interception: An attacker captures or intercepts
encapsulated VXLAN traffic between VTEPs to gain access to
sensitive data. If VXLAN traffic is not encrypted, attackers on the same
IP network can sniff encapsulated packets; analyzing VXLAN headers
allows attackers to reconstruct original Layer 2 payloads. This can lead
to data theft or exposure of sensitive information and compromised

privacy and confidentiality.

* Spoofed VTEP attack: Attackers create a rogue VTEP to inject
malicious traffic into the VXLAN network. A rogue VTEP is
configured to mimic a legitimate VTEP by using the same VXLAN
Network Identifier (VNI). The rogue VTEP participates in VXLAN
communication, injecting unauthorized or malicious frames into the
network. Results can be disruption of legitimate traffic and
unauthorized access to VXLAN segments or even spread of malware or
other malicious payloads. Once spot, a rogue VTEP should be
immediately removed from the production infrastructure to avoid worst
scenarios.

* Flooding and broadcast amplification: Attackers exploit the VXLAN
replication mechanism to flood the network with unnecessary broadcast
or multicast traffic. VXLAN replicates broadcast, unknown unicast,
and multicast (BUM) traffic to all VTEPs in the same VNI. Attackers
generate excessive BUM traffic, consuming bandwidth and resources
across the network. This can lead to network congestion.

e IP spoofing within VXLAN: An attacker inside the VXLAN fabric
spoofs an IP address within a VXLAN segment to impersonate another
system. The attacker sends packets with a forged source IP address,
which can confuse other devices, misdirect traffic, or enable MITM
attacks. The impact could be traffic redirection and potential data theft
or disruption.

A lot of work on FlOwer has been done while working on the on-premises
cloud solution described in Chapter 11, Firewall Rules Optimization Use
Case, so adding support for VTEP and SDN was quite natural.

FlOwer can track SDN VTEP connections and match them in a couple of
files that are read at the daemon start up from the file
/opt/flower/iplist/vtep4list.txt and
/opt/flower/iplist/vtep6list.txt.

These files contain an IPv4 (for the vtep4list.txt) or IPv6 (for the
vtep6list.txt) address per row and represent the allowed VTEP peers
allowed to make traffic in an SDN context.

A VTEP is detected when VXLAN traffic (4789/udp or 8472/udp) is

detected.

Again, to look for unallowed VTEP traffic, we can change our query to
something like:

df = conn.query_dataframe ("SELECT

TIMESTAMP, LEVEL,CATEGORY, SOURCE,MESSAGE FROM
FLOWER.EVENTS WHERE MESSAGE LIKE \'%VTEP%\' AND (
TIMESTAMP >= toDateTime(\'"+strFrom+"\') AND TIMESTAMP
<= toDateTime(\'"+strTo+"\')) ORDER BY TIMESTAMP
DESCENDING;")

SDN) centralizes network control through an SDN controller, which
manages network devices and handles routing, forwarding, and policy
enforcement. The controller operates as the brain of the SDN architecture,
communicating with the network's data plane via southbound APIs (for
example, OpenFlow) and interacting with management applications via
northbound APIs.

This centralization improves network flexibility and programmability but
introduces a single point of failure. Compromising the SDN controller can
lead to severe disruptions, data breaches, or loss of network control.

Some types of threats can be:

e DDoS attack on the controller: Overloading the SDN controller with
excessive requests to render it unresponsive or unavailable. Attackers
flood the controller with large numbers of malicious or malformed
packets, overwhelming its processing capacity. Legitimate control
plane operations are delayed or fail entirely. The result can lead to
network downtime and inability to reconfigure or manage network
flows.

e MitM attack on southbound APIs: Intercepting or tampering with
communication between the SDN controller and network devices.
Attackers position themselves between the controller and data plane
devices like switches or routers. Southbound protocols like OpenFlow
may lack sufficient encryption or authentication, making them
susceptible to interception or modification. Impact can be
cavesdropping on sensitive network information and injection of
malicious flow rules or communication disruption.

e Flow rule exhaustion: Overloading the flow table of switches by
flooding the controller with new flow requests. Attackers generate a
high volume of packets with unique headers, forcing switches to
request new flow entries from the controller. The switch flow table fills
up, leading to dropped packets or degraded performance. Results are
reduced switch performance, network congestion and packet loss.

FlOwer can also track SDN controller connections and match them in a
couple of files that are read at the daemon start up from the file
/opt/flower/iplist/sdncontrollers4list.txt and

/opt/flower/iplist/sdncontrollers6list.txt.

These files contain an IPv4 (for the sdncontrollers4list.txt) or
IPv6 (for the sdncontrollers6list.txt) address per row and represent
the allowed SDN controllers in an SDN context.

An SDN controller is considered such when making traffic on:
e OpenFlow (port range 6633-6653/tcp-udp)

e NETCONF (port range 830-833/tcp-udp)

If we want to take care of SDN controllers’ traffic, we simply change our
query in the script to:

df = conn.query_dataframe ("SELECT
TIMESTAMP, LEVEL,CATEGORY, SOURCE,MESSAGE FROM
FLOWER.EVENTS WHERE MESSAGE LIKE \'%SDN%\' AND (
TIMESTAMP >= toDateTime(\'"+strFrom+"\') AND TIMESTAMP
<= toDateTime(\'"+strTo+"\")) ORDER BY TIMESTAMP
DESCENDING;")

Automating checkups

As we said in the scenario, we can automate the checkups that should be
done regularly with a script run in crontab. This will create a scheduled
report of network traffic that can give us the status of our network posture,
acting like a Penetration testing report.

To ease your work, FlOwer provides in its FlI0wer development environment

(the flOwer-devel packages) a quite complete script performing most of the
things described previously and even more, in source form.

It will create:

e An HTML document with all CSV that you can share by using an
internal web server.

e PDF version of the report for a handier reading.

It 1s not included here for size and reading reasons, but it is provided in full
source code that you can customize at ease. It is written in Python 3 and
uses the FlOwer RTE, so you should have all dependencies. For immediate
reaction to threats, you can also make use of the embedded LUA interpreter
in FlOwer, which can run user-customized LUA scripts that you can
program to perform whatever action you prefer, including executing system
commands or shell scripts. Just schedule it to run according to your
requirements, and you will have the network situation at your fingertips
whenever you need it. The sky is your limit.

Conclusion

Throughout this book, we've explored how flow data analysis provides
unique insights into network traffic that traditional monitoring tools like
packet capture and DPI cannot match. This final chapter has demonstrated
how to transform theoretical knowledge into practical security controls by
detecting and responding to a comprehensive range of threats—from DNS
poisoning to covert channels and SDN controller attacks.

The power of flow-based anomaly detection lies in its ability to spot
patterns across vast volumes of network traffic without the processing
overhead of deep packet inspection. By implementing the techniques
described in this chapter, organizations typically reduce their threat
detection time from days or weeks to minutes or hours.

As you implement these controls in your environment, consider following a
phased approach:

1. Begin with critical infrastructure protocols (DNS, NTP, BGP).
2. Progress to user-driven threats (P2P, TOR).

3. Finally, implement the more complex detection mechanisms for covert
channels and scanning.

Remember that flow analysis is not a static implementation but an evolving

practice. As attackers develop new evasion techniques, your detection
methods must likewise evolve. Regular reviews of your flow matrix will
help identify emerging patterns that might indicate novel threats.

The scripts and methods provided in this book serve as a foundation that
you can customize and extend to meet your organization's specific security
requirements. The combination of automated checks with human analysis
creates a powerful security posture that makes your network significantly
more resilient to both current and emerging threats.

Thank you for joining this journey through the world of flow data analysis.
Hopefully, the knowledge and techniques shared in this book will help you
build more secure, reliable, and observable networks.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Symbols

800 Gbps Networks 28

800 Gbps Networks, challenges
Analysis Tools 29
Bandwidth Throttling 29
High-Speed Capture 28
Hybrid Approach 29
Parallel Processing 29
Sampling 29
Traffic Filtering 29

A

Access Point (AP) 105
AP, features 107, 108
AP, terms 105, 106

B

BGP 242

BGP Network, attacks
Prefix Deaggregation 242
Route Hijacking 242
Session Hijacking 242
Session Reset Attack 242

C

Canonical MicroStack 180

Capacity Planning 226

Capacity Planning, aspects
Baseline Establishment 226
Bottleneck Identification 226
Demand Forecasting 226
Traffic Visibility 226

Capacity Planning, capacity
Cloud Migration 228
Data Center, scaling 227
IoT Network 228

VoIP/Video Traffic, planning 228

WAN, optimizing 227

Index

Capacity Planning, flow
Bottlenecks, identifying 227
Forecast 227
Plan/Implement 227
Traffic Patterns 227

Cisco SG350, steps 127, 128

Clickhouse 184

Clickhouse, ingesting 184-190

Clickhouse, interacting 196

Cloud Provider 120

Cloud Provider, features 120-122

Computer Network 3

Computer Network, architecture 4

Computer Network, aspects
Capacity Planning 5
Compliance/Auditing 5
Network Visualization 5
Optimization 5
Performance, monitoring 4
Protocol Analysis 5
Quality of Service (QoS) 5
Security Analysis 4
Traffic Engineering 5
Troubleshooting 4

Computer Network, characteristics
Addressing 102
Bandwidth/Data Transmission 103
LANs/WANSs 103
Links/Connections 102
Networking Devices 102
Network Management 103
Nodes 102
Protocols 102
Scalability 103
Security Measures 103
Topologies 102

Computer Network, components
Demilitarized Zone (DMZ) 114
LAN 108
SDN 118
Virtual Entensible LAN (VXLAN) 111
VPN 113
WAN 110

Computer Network, features
Broadcast/Multicast, handling 104
Collision Domain Separation 104
Ethernet 105
Fabric, switching 104

Forwarding/Filtering 104
Link Aggregation/Redundancy 105
MAC Address, learning 104
Managed/Unmanaged Switches 105
Management Interfaces 105
Port Connectivity 104
QoS 105
VLAN, supporting 105
Computer Network, threats 5-7
Covert Channel 245
Covert Channel, protocols
DNS 245
HTTP/HTTPS 245
ICMP 245
TCP/UDP 245
Covert Channel, steps 245, 246
Cybersecurity Threats 238

D

Demilitarized Zone (DMZ) 114

Discovery 234

Discovery, lessons 235

DMZ, architecture 116

DMZ, characteristics
Firewall Protection 114
Intrusion Detection/Prevention Systems 115
Isolation 114
Logging/Monitoring 115
Multi-Tiered Architecture 114
Proxy Servers/Reverse Proxies 115
Security Perimeter 114

DMZ, components
Backend Network 115, 116
Frontend Network 115

DNS Attacks 239

DNS Attacks, types
Reflection 239
Spoofing 239
Tunneling 239

DNS Queries 202

DNS Queries, optimizing 204-206

DNS Queries, strategies
Alternatives 203
DNSSEC 203
Limit Access 203
Rate Limiting 203
Traffic, monitoring 203

DNS Queries, ways 202, 203

Dynamic Network Flow Protocols, advantages
Adaptability 98
Customization/Flexibility 98
Data Relevance 98
Overhead, reducing 98
Dynamic Network Flow Protocols, disadvantages
Complexity 98
Interpretation Issues 98
Possible Interoperability 98

E

Elasticsearch 191

Elasticsearch, features
Distributed Architecture 191
Elastic Stack, integrating 192
Full-Text Search 191
Inverted Index 191
Queries Aggregations 191
Real-Time Search 191
RESTful API 191
Schema-Free Data Model 191

Elasticsearch, ingesting 192, 193

Elasticsearch, interacting 197

Elasticsearch, points 196

F

Firewalls 14
Firewalls, benefits
Access Control 15
Logging/Reporting 15
Network Segmentation 15
Protection/Unauthorized Access 15
Traffic Inspection 15
Firewalls, layers
NGFW 14
Packet Filtering 14
Proxy 14
Stateful Inspection 14
Fixed Network Flow Protocols 96
Fixed Network Flow Protocols, advantages
Interoperability 97
Predictability 97
Resource Efficiency 97
Simplicity/Standardization 97
Fixed Network Flow Protocols, disadvantages
Field Evolution 98
Limited Flexibility 97

Potentially High Overhead 98
Fixed Network Flow Protocols, terms
Diverse/Suitability 97
Flexibility 96
Flow Fields 96
Modification/Evolution 97
Overhead/Efficiency 97
Template-Based Approach 96
FlOwer 182
FlOwer, architecture 197
FlOwer, configuring 182-184
FlOwer Matrix, implementing 217-225
FlOwer RTE 202
FlOwer, ways
Events 201
Flows 197
Flow Matrix 216
Flow Matrix, architecture 228
Flow Matrix, benefits 229
Flow Matrix, characteristics 216, 217
Flow Matrix, steps 229
Flow Matrix, terms
Compliance/Auditing 229
Incident Response 229
Microsegmentation 229
Policy Definition/Enforcement 228
Threat Detection 229
Traffic Visibility 228
Flow Matrix, tools 217
Frontend Network 117
Frontend Network/DMZ, differences
Placement Services 117
Scope/Purpose 117
Security Measures 117

H

Horizontal Scanning 247

HP Switch 128

HP Switch, steps 128, 129
Huawei Switch 129

Huawei Switch, steps 129, 130

|

IDS, terms
Alert Generation 17
Anomaly-Based Detection 17
Data Collection 16

Heuristic/Behavioral Analysis 17
Logging/Reporting 17
Response/Mitigation 17
Signature-Based Detection 17
Traffic Analysis 16
IDS, types
HIDS 17
NIDS 17
Intrusion Detection Systems (IDS) 16
Intrusion Prevention Systems (IPS) 18
IPFIX 67
IPFIX, configuring 69-78
IPFIX, structure 67-69
IPS, terms
Alerting 18
Anomaly-Based Detection 18
Automatic Blocking 18
Behavioral Analysis 18
Connect Reset 18
Dropping 18
Integration 19
Logging/Reporting 19
Rate Limiting 19
Signature-Based Detection 18
Traffic Inspection 18

L

LAN 108

LAN, characteristics 108, 109
Logical/Physical Design 103

M

Microsoft Windows Systems 162
Microsoft Windows Systems, preventing 162-166

N

NetFlow 140

NetFlow v1, configuring 36
NetFlow vl1, structure 35, 36
NetFlow V5, configuring 42
NetFlow V5, structure 40-42
NetFlow V9, configuring 47-53
NetFlow V9, structure 46, 47
NetFlow Version 1 (NetFlow V1) 35
NetFlow Version 5 (NetFlow V5) 40
NetFlow Version 9 (NetFlow V9) 45

NetFlow, versions
BigIP F5 Load Balancer 159, 160
Checkpoint Firewall 157
Cisco 887 142
Cisco 1721 141
Cisco 2800 142
Cisco ASA Firewall 144
Cisco Firepower Firewall 145
Fortinet FG-60 Firewall 154
Huawei AR150 Router 151
Huawei Eudemon 8000E-X Firewall 152, 153
Juniper MX Router 148-151
Juniper SRX100 146, 147
MikroTik Router 150
Paloalto PA-500 Firewall 149
SonicOS 7.0 155
Sophos Firewall 156
WatchGuard Firewall 158
Network Bandwidth 27
Network Bandwidth, trends
Data Centers 28
Enterprise Networks 28
ISP Backbones 28
Research/Education Networks 28
Network Flow-Based Traffic Analysis 12
Network Flow-Based Traffic Analysis, terms
Aggregation/Summarization 12
Anomaly Detection 13
Application Identification 13
Bandwidth, monitoring 13
Capacity Planning 13
Compliance/Reporting 13
Flow Correlation 13
Flow Data Collection 12
Flow, defining 12
Flow Record Generation 12
Threat Detection 13
Traffic Profiling 13
Network Flow Collectors 33
Network Flow Collectors, aspects 34
Network Flow Exporters 32
Network Flow Exporters, aspects
Configurable Parameters 33
Data Collection 32
Efficient Resources 33
Flow Aggregation 32
Flow Record, exporting 33
Flow Record Generation 33

Flow Sampling 33
Protocol, supporting 33
Timestamping 33
Network Proxies 15
Network Proxies, purpose
Access Control 16
Anonymity 15
Caching 15
Content Filtering 15
Geographical Restrictions 16
Load Balancing 15
Monitoring/Logging 16
Network Optimization 16
Protocol Conversion 16
Security 16
Network Scanning 247
Network Security Traffic Analysis 7
Network Security Traffic Analysis, aspects
Alerting/Reporting 8
Anomaly Detection 8
Behavioral Analysis 8
Continuous Monitoring 8
Flow-Level Analysis 7
Incident Response 8
Packet-Level Analysis 7
Protocol Analysis 7
Signature-Based Detection 8
Threat Intelligence 8
Traffic Monitoring 7
Network Security Traffic Analysis, techniques 8-11
NTP Attack 241

0
OLAP Database 184
Open-Source Network 24
Open-Source Network, features 24, 25
Open-Source Network, tools

Argus 24

nfdump 24

Softflowd 24

System Internet-Level Knowledge (SiLK) 24

Yet Another Flowmeter (YAF) 24
Open vSwitch (OVS) 173
OVS, benefits

Centralized Management 175

Cost Efficiency 175

Flexibility 175

High Performance 175

Interoperability 175
OVS, features
Distributed Switching 174
Flow-Based, switching 173
Network Tagging 174
Programmability/Automation 174
SDN Protocols, supporting 173
OVS, terms 174

P
P2P Threats 243
P2P Threats, elements
Bandwidth Consumption 243
Data Exposure 243
Intellectual Property 243
Loss Productivity 243
Malware/Viruses 243
Packet Inspection 11
Packet Inspection Network 19
Packet Inspection Network, cons
Complexity 20
Encrypted Traffic 20
Limited Scalability 20
Performance Impact 20
Privacy Concerns 20
Resource Intensive 20
Packet Inspection Network, pros
Accurate Threat Detection 19
Customization 20
Forensic Analysis 19
Granular Visibility 19
Protocol Analysis 20
Packet Inspection, terms
Application Recognition 11
Content Inspection 11
DPI 11
Log Generation/Reporting 12
Packet Capture 11
Performance Considerations 12
Protocol Identification 11
Real-Time, monitoring 12
Signature-Based Threat, detecting 11
Traffic Analysis 11
Traffic Decryption 12
Packet-Level Network Analysis 20
Packet-Level Network Analysis, cons 23
Packet-Level Network Analysis, options
Cisco Strealthwatch 22

Colasoft Capsa 22
Extra Reveal (x) 22
NETSCOUT InfiniStreamNG 22
NETSCOUT nGeniusONE 22
Plixer Scrutinizer 22
Riverbed SteelCentral Packet 22
SolarWinds 22
WildPackets 22
Packet-Level Network Analysis, pros 23
Packet-Level Network Analysis, tools
Arkime 21
ChopShop 21
Darkstat 21
NetworkMiner 21
Snort 21
Suricata 21
tepdump 21
Tshark 21
Wireshark 21
Xplico 21
PAM Solutions 207
PAM Solutions, benefits
Compliance/Governance 208
Operational Efficiency 208
Security Risks, reducing 208
PAM Solutions, features
Access Control/Policy Enforcement 207
Auditing/Reporting 207
Automation/Policy Management 208
Credential Management 207
Just-In-Time (JIT) 207
Session Management/Monitoring 207
PAM Solutions, preventing 208-210
PAM Solutions, use cases 208
Port Mirroring 130
Port Mirroring, architecture 131
Port Mirroring, elements
Configuration 131
Destination Port 131
Source Port 131
Port Mirroring, implementing 132-137
Port Mirroring, purpose 131
Port Mirroring, types
Local 131
Remote 131
Proxmox 179

R

Red Hat-Derived 167
Red Hat-Derived, optimizing 167, 168
Rogue VTEPs 210, 211

S

Sampled Flow Protocols 99
Sampled Flow Protocols, advantages
Reduced Overhead 99
Resource Efficiency 99
Scalability 99
Sampled Flow Protocols, disadvantages
Accurate Analysis 99
Loss Granularity 99
SDN, benefits
Automation/Orchestration 172
Centralized Management 172
Cost Efficiency 172
Flexibility 172
Scalability 172
Security, enhancing 172
SDN, challenges
Complexity 172
Interoperability 173
Security 173
SDN, characteristics
Centralized Network, managing 119
Control/Data Plane Separation 119
Controller 119
Dynamic Network, provisioning 119
Flexibility/Adaptability 120
Network Automation 120
Network Visibility, enhancing 120
OpenFlow Protocol 119
Programmability 119
SDN, concepts
Control/Data Plane 170
Controller 170
Northbound APIs 170
Southbound APIs 170
Virtualization/Abstraction 171
SDN, fundamentals
APIs Communication 171
Centralized Control 171
Control Data, decoupling 171
Dynamic/Adaptive Networks 171
Programmability 171
SDN, layer
Application 171

Control 171

Infrastructure 172
SDN, use cases

Cloud Networking 172

Data Centers 172

Security 172

WANSs 172
sFlow 83
sFlow, advantages

Flexibility 85

Overhead, reducing 85

Real-Time Insights 85
sFlow, architecture 126, 127
sFlow, concepts

Agent 84

Collector 84

Counter Sampling 84

Packet Sampling 84
sFlow, operations

Collection 85

Counter Encapsulation 85

Packet/Counter Sampling 85

Packet Transmission 85

Sampling Configuration 85
sFlow, optimizing 86-92
sFlow, protocol 85, 86
Simple Network Management Protocol (SNMP) 211
SNMP, optimizing 212-214
Software Defined Networking (SDN) 118
Split Flow Data 235, 236

T

TOR Threats 244

TOR Threats, concepts
Attribution Challenges 244
Illegal Activities 244
Malware/Exploits 244
Regulatory Violations 244
Suspicious Activity 244

Traffic Classification 202

Traffic Encryption 26

Traffic Encryption, aspects
Anomaly Detection 27
Certificate Analysis 27
Endpoints/Host Analysis 27
Flow Analysis 27
Metadata Analysis 27
Threat Intelligence 27

TLS Inspection 27

Traffic Encryption, reasons
Browser Push 26
Encrypted Applications 26
HTTPS Usage 26
Rapid Growth 26
Regulatory Compliance 26
Websites 26

U

Unsampled Flow Protocols 99

Unsampled Flow Protocols, advantages
Accurate Analysis 99
Detailed Insight 99
Granular Data 99

Unsampled Flow Protocols, disadvantages
Overhead, increasing 99
Resource Intensive 99

\%
Vertical Scanning 247
Virtual Entensible LAN (VXLAN) 111
Virtual Tunnel Endpoints (VTEP) 248
VMware 176
VMware, prerequisites 176
VMware, steps 176-179
VPC 122
VPC, features
Connectivity 122
Customization 122
High Availability 123
Isolation 122
Resource Management 123
Scalability 122
Security 122
VPN 113
VPN, characteristics 113, 114
VTEDP, attacks 248, 249
VTEDP, threats
DDoS Attack 250
Flow Rule Exhaustion 250
MitM Attack 250
VXLAN, features 111, 112

W
WAN 110

WAN, components 110, 111

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Table of Contents
	1. Foundation of Network Flow Analysis
	Introduction
	Structure
	Objectives
	Computer network
	Computer network analysis
	Common network security threats to company networks
	Network security traffic analysis
	Techniques for performing network security traffic analysis
	Packet inspection network traffic analysis
	Network flow-based traffic analysis
	Basics of network protection
	Firewalls and packet filters
	Network proxies
	Intrusion detection systems
	Intrusion prevention systems
	Pros and cons of packet inspection network traffic analysis
	Open-source and commercial solutions
	Pros and cons of network flow-based traffic analysis
	Open-source and commercial solutions
	Traffic encryption
	Network bandwidth increase

	Challenge of analyzing 800 Gbps networks
	Conclusion

	2. Fixed and Dynamic Length Flow Protocols
	Introduction
	Structure
	Objectives
	Different kinds of network flow exporters
	Network flow collectors
	NetFlow version 1
	Limitations of NetFlow v1

	NetFlow version 5
	Advantages of NetFlow v5

	NetFlow version 9
	Advantages of NetFlow v9

	IPFIX
	Advantages of IPFIX

	sFlow v5
	Advantages of sFlow v5

	Differences between fixed and dynamic flow protocols
	Conclusion

	3. Network Topologies
	Introduction
	Structure
	Objectives
	Computer network
	Logical and physical design
	Main components of a computer network
	LAN
	WAN
	VXLAN
	VPN
	DMZ/frontend/backend network
	Frontend network infrastructure
	Backend network infrastructure
	Communication between frontend and backend
	Demilitarized Zone
	Frontend network
	Key differences

	SDN

	Making cloud provider networks
	VPC
	Placing network probes
	Conclusion

	4. Implementing Flow Export on Layer 2 Devices
	Introduction
	Structure
	Objectives
	Catching network flows on Layer 2
	Importance of sFlow
	Configuring sFlow export on a Cisco SG350 switch
	Configuring sFlow export on an HP switch
	Configuring sFlow export on an Huawei switch
	Standard way to get flows from anywhere
	Types of port mirroring
	Use cases
	Considerations

	Conclusion

	5. Implementing Flow Export on Layer 3 Devices
	Introduction
	Structure
	Objectives
	Catching network flows on Layer 3
	General considerations for the example configurations
	Configuring NetFlow v9 export on a Cisco 1721 router with IOS 12.1
	Configuring NetFlow v9 export on a Cisco 2800 router with IOS 12.3
	Configuring IPFIX export on a Cisco 887 router with IOS 15.4
	Configuring IPFIX export on a Cisco ASA firewall
	Configuring IPFIX export on a Cisco Firepower firewall
	Configuring IPFIX export on a Juniper SRX-100 firewall
	Configuring IPFIX export on a Juniper MX router
	Configuring NetFlow export on a Palo Alto PA-500 firewall
	Configuring IPFIX export on a MikroTik router
	Configuring NetFlow v9 export on a Huawei AR150 router
	Configuring NetFlow v9 export on a Huawei Eudemon 8000E-X firewall
	Configuring IPFIX export on a Fortinet FG-60 firewall
	Configuring IPFIX export on a SonicWALL firewall with SonicOS 7.0
	Configuring IPFIX export on a Sophos firewall
	Configuring IPFIX export on a Checkpoint firewall
	Configuring IPFIX export on a WatchGuard firewall
	Configuring IPFIX export on a BigIP F5 load balancer
	Conclusion

	6. Implementing Flow Export on Servers
	Introduction
	Structure
	Objectives
	Catching network flows on Microsoft Windows systems
	Catching network flows on Linux and UNIX systems
	Conclusion

	7. Implementing Flow Export on Virtualization Platforms
	Introduction
	Structure
	Objectives
	SDN and its importance in modern virtualization
	Open vSwitch
	Catching flows on VMware distributed virtual switches
	Catching flows on Proxmox VE 7.x/8.x
	Catching flows on Canonical MicroStack
	Conclusion

	8. Ingesting Data into Clickhouse and Elasticsearch
	Introduction
	Structure
	Objectives
	Choosing and installing a flow collector
	Fl0wer
	Installing Fl0wer and UDP samplicator

	Clickhouse
	Ingesting data into Clickhouse

	Elasticsearch
	Ingesting data into Elasticsearch

	Conclusion

	9. Flow Data Analysis: Exploring Data for Fun and Profit
	Introduction
	Structure
	Objectives
	Understanding what we collected
	Interacting with Clickhouse
	Interacting with Elasticsearch
	Fl0wer data model
	Flows
	Events

	Fl0wer RTE
	Traffic classification
	Data analysis examples
	DNS queries
	PAM access

	Rogue VTEPs
	Out of policy SNMP
	Conclusion

	10. Understanding the Flow Matrix
	Introduction
	Structure
	Objectives
	Flow matrix
	Making good use of Fl0wer’s flow matrix
	Capacity planning
	Network security with the flow matrix
	Conclusion

	11. Firewall Rules Optimization Use Case
	Introduction
	Structure
	Objectives
	Scenario
	Understanding firewall rules optimization criteria
	An interesting discovery
	Using simple shell scripting to split flow data
	Conclusion

	12. Simple Network Anomaly Detection System Based on Flow Data Analysis
	Introduction
	Structure
	Objectives
	Scenario
	Common cybersecurity threats
	Handling DNS threats
	Handling NTP threats
	Handling BGP threats
	Handling P2P threats
	Dealing with TOR threats
	Dealing with covert channels
	Dealing with horizontal and vertical scans
	Dealing with VTEP and SDN controller attacks
	Automating checkups
	Conclusion

	Index

